Graham's Number - Numberphile

  Рет қаралды 2,836,215

Numberphile

Numberphile

12 жыл бұрын

See our other Graham's Number videos: bit.ly/G_Number
A number so epic it will collapse your brain into a black hole! Yet Tony Padilla and Matt Parker take the risk of discussing its magnitude. Watch with caution.
More links & stuff in full description below ↓↓↓
See also our video about the Googol and Googolplex at: • Googol and Googolplex ...
NUMBERPHILE
Website: www.numberphile.com/
Numberphile on Facebook: / numberphile
Numberphile tweets: / numberphile
Subscribe: bit.ly/Numberphile_Sub
Videos by Brady Haran
Patreon: / numberphile
Brady's videos subreddit: / bradyharan
Brady's latest videos across all channels: www.bradyharanblog.com/
Sign up for (occasional) emails: eepurl.com/YdjL9
Numberphile T-Shirts: teespring.com/stores/numberphile
Other merchandise: store.dftba.com/collections/n...

Пікірлер: 7 300
@petertimowreef9085
@petertimowreef9085 8 жыл бұрын
Mathemathicians are so funny. "Imagine a number that's unimaginably high. And then the answer is between that number, and 11. Childsplay really, let's go to the pub."
@MrCubFan415
@MrCubFan415 6 жыл бұрын
Actually, the lower bound is 13 now (and the upper bound has been reduced to 2^^^6).
@stefanr8232
@stefanr8232 6 жыл бұрын
where is link to proof?
@arnavanand8037
@arnavanand8037 5 жыл бұрын
2 + 2 = Something between -∞ and ∞
@arnavanand8037
@arnavanand8037 5 жыл бұрын
Or possibly between 5 and 5454545575454545457575757575757242454545454542424545454
@robinlindgren6429
@robinlindgren6429 5 жыл бұрын
to be fair, having reduced it to any range at all means they have narrowed it down to a ratio that approaches 0% of all numbers, that's practically being spot on!
@theviniso
@theviniso 8 жыл бұрын
g64/g64=1. That's the only operation that I can do involving this number.
@panosm2007
@panosm2007 8 жыл бұрын
+Nastygamerx70 ­ (Yasser Moustaine) how about g64 * 0 = 0?
@panosm2007
@panosm2007 8 жыл бұрын
+Грамматический нацист nice
@funnydogman9534
@funnydogman9534 8 жыл бұрын
g64÷0=error
@funnydogman9534
@funnydogman9534 8 жыл бұрын
3^^^^^^^^^^...(g64 arrows)3 = g65
@funnydogman9534
@funnydogman9534 7 жыл бұрын
g64-(g64-1)=1
@NoriMori1992
@NoriMori1992 5 жыл бұрын
I love Wikipedia's description of how big Graham's number is: "It is so large that the observable universe is far too small to contain an ordinary digital representation of Graham's number, assuming that each digit occupies one Planck volume … But even the number of digits in this digital representation of Graham's number would itself be a number so large that its digital representation cannot be represented in the observable universe. Nor even can the number of digits of that number-and so forth, for a number of times far exceeding the total number of Planck volumes in the observable universe."
@philip8498
@philip8498 2 жыл бұрын
this reads like something from the hitchhikers guide to the galaxy
@RH-ro3sg
@RH-ro3sg 2 жыл бұрын
And, while perfectly true, even that is an extreme understatement, in the sense that that description already is true for g1= 3↑↑↑↑3, the mere _initial number_ (with just 4 measly arrows), used to get up to Graham's number. Even for 3↑↑↑3 (three arrows), you'd have to repeat the 'number of digits' procedure several _trillion_ times to arrive at something humanly digestible (or at a number expressible within our observable universe as described in the quote). For 3↑↑↑↑3 (4 arrows) that number not only far exceeds the number of Planck volumes in the observable universe, but is utterly beyond human comprehension itself.
@andrewbloom7694
@andrewbloom7694 Жыл бұрын
@@RH-ro3sg They are all well beyond human comprehension. You can try to define them with things like arrow notation sure, but you can't fundamentally UNDERSTAND something like that. Not even the smartest human can.
@RH-ro3sg
@RH-ro3sg Жыл бұрын
@@andrewbloom7694 I think it depends on how exactly you'd define 'comprehension' or 'understanding'. In a rather strict sense - intuitively _grasping_ and _feeling_ the magnitude of a number and immediately recognizing it without conscious thought, we as humans probably don't truly 'get' any number beyond approximately 7. Beyond that, we have to start counting (or approximating), both of which are already more indirect ways of appreciating a number. In the sense of being to able to _visualize_ a number in some manner, I'd say our comprehension ends at around a googol, if we're being very charitable (possibly the limit is much lower). You're talking about imagery such as 'a hundred million of our observable universes, filled to the brim with grains of sand' then. I suppose that visualization of such a type is what most people think of when they say they 'comprehend' a number. But it's not the only way to get to understanding. Numbers such as Graham's number can still be 'understood', but in a more indirect way, namely by the procedures used to obtain them. Finally, there are numbers so large that even the procedures to obtain them cannot be described anymore, they can only be _characterized_ . Rayo's number would be an example. Also, I'm not really sure I truly _comprehend_ even a number as low as three. (As in: what is the ultimate essence of 'three-ness'?)
@vedantsridhar8378
@vedantsridhar8378 Жыл бұрын
Not even the number of powers, not even the number of arrows actually!
@ve4410
@ve4410 2 жыл бұрын
"Can you give me a ballpark" "It's between 11 and Graham's number" "That's convenient".....
@austinlincoln3414
@austinlincoln3414 2 жыл бұрын
Lol
@FatherManus
@FatherManus Жыл бұрын
Yeah that really narrows it down.
@finmat95
@finmat95 9 ай бұрын
Ehy, previously it was between 6 and Graham's number, that's an improvement, you could at least thank me.
@user-hu9zi2jc2m
@user-hu9zi2jc2m 3 ай бұрын
REALLY convenient
@X-3K
@X-3K 8 жыл бұрын
So basically, this number happened because someone gave a Mathematician a coloring book.
@bakedpotato3734
@bakedpotato3734 7 жыл бұрын
LOL
@tomlupien4896
@tomlupien4896 6 жыл бұрын
A higher-dimensional coloring book
@codysangster7413
@codysangster7413 4 жыл бұрын
ye
@mohammednajl5950
@mohammednajl5950 4 жыл бұрын
and tree 3 is because of colouring pencils
@spyrex3988
@spyrex3988 4 жыл бұрын
Graph theory isn't just about colouring points
@MordredMS
@MordredMS 7 жыл бұрын
I actually came up with an even bigger number. Graham's Number+1. I call it "Mr. Whiskers".
@glass7923
@glass7923 7 жыл бұрын
XD
@prometheusxo6013
@prometheusxo6013 7 жыл бұрын
I wish comments like this show up more. Now it seems like channel promotion and pepole asking for likes are tue only thing I see, stuff like this is what the internet is for
@vlh371
@vlh371 7 жыл бұрын
The reason Grahams number is special is because it was used to solve a problem. Grahams number plus 1 isn't useful.
@valhalla4558
@valhalla4558 7 жыл бұрын
I came up with a far bigger number. Grahams number to the power of googolplexian. I call it "Mr Puff"
@glass7923
@glass7923 7 жыл бұрын
Keyslam Games I call it "Lo Wang"
@leisulin
@leisulin 2 жыл бұрын
But even as they almost literally said: Graham's number is unimaginably large, but it's still closer to zero than it is to infinity! Which boggles the mind even more.
@yam1146
@yam1146 2 жыл бұрын
My brain is too small
@AA-el7ot
@AA-el7ot 2 жыл бұрын
Infinity is not a number though
@franchstar1
@franchstar1 2 жыл бұрын
doesn't really boggles the mind since infinity is not a number but a concept and all numbers would be closer to zero.
@Crazytesseract
@Crazytesseract 2 жыл бұрын
What do you mean by "closer to infinity"? If you say 5 is closer to infinity than 3, or Graham's number is closer to infinity than one trillion, that's fine; but it makes no difference to "infinity". Graham's number can be imagined extremely few.
@leisulin
@leisulin 2 жыл бұрын
@@Crazytesseract I mean just what I said. Actually my comment comes from some cartoon that was forwarded to me (the name of which I don't remember) depicting a kid in bed saying to his dad "I'm not sleepy yet, could you tell me a bedtime PARADOX" (not story), and the dad says "every number is closer to zero than infinity, but still we approximate large numbers as infinite". Which knocks the kid unconscious from the paradoxical shock.
@onebigadvocado6376
@onebigadvocado6376 3 жыл бұрын
"There's a very easy analogy" (Promptly fails the analogy)
@nthgth
@nthgth 9 жыл бұрын
"There's still an infinite number of numbers that're bigger than Graham's number, right? So frankly, we pretty much nailed it as far as I'm concerned." Lmao
@Ida-xe8pg
@Ida-xe8pg 5 жыл бұрын
I actually know graham's number G64/G64 = 1 , G64-G64 = 0 , G64*G64 = G64^2 ,G64+G64 = G64*2!!
@Ida-xe8pg
@Ida-xe8pg 5 жыл бұрын
Graham's Number! universe collapse
@shyshka_
@shyshka_ 5 жыл бұрын
so does it mean that the calculation is infinitely precise?
@danielxu3594
@danielxu3594 5 жыл бұрын
@Fester Blats And also every number is less than Grahams number at the same time.
@zasharan2
@zasharan2 5 жыл бұрын
The thing is, can you actually express those bigger numbers without saying G64 + some other number, or without using that same strategy more times, and one guy named Rayo did that. He gave a statement that gave a number bigger than Graham’s number, without using the way graham got his number.
@123games1
@123games1 8 жыл бұрын
Graham's number is so insanely large that the number representing the number of digits in Graham's number would have an incomprehensible number of digits itself!
@jakethornton7
@jakethornton7 8 жыл бұрын
+123games1 That even starts to apply around G1.
@RockerSkate1423
@RockerSkate1423 8 жыл бұрын
+123games1 Yeah man, even the number of digits would be a mind-blowing number, it's just insane.
@drinkingthatkool-aid3193
@drinkingthatkool-aid3193 8 жыл бұрын
+Andrés Ramírez Yep even 3^^5 already has 0.61 x 10^(3.64 trillion)....DIGITS. And you still need to go down 7.6 trillion 3's to get 3^^^3.
@RH-ro3sg
@RH-ro3sg 3 жыл бұрын
In fact, if you repeated that process (the number representing the number of digits of the number representing the number of digits of Graham's number), and then again, and so on, even the _number of times you'd have to repeat that process_ to arrive at a number comprehensible for average humans would _still_ form an incomprehensibly large number of digits. And probably repeating the process on _that_ number still would. And so on. As a commentator once put it: "Graham's number is far larger than most people's intuitive conception of _infinity_ . ((Coincidentally, taking 'the number of digits' approximately is what you are doing when taking the logarithm of a number, so essentially we are talking here about log(log(log((log(g64) and the number of 'logs' you'd need to arrive at something digestible)) ".
@user-bc3ri8ez9c
@user-bc3ri8ez9c 3 жыл бұрын
Even the universe isn't enough to make a 1%
@The_Story_Of_Us
@The_Story_Of_Us 2 жыл бұрын
What makes Graham’s Number so great is that despite its (literally) unfathomable size, we can using less than a page’s worth of word’s describe how to get there. We can describe what 3↑3 means, we can describe what 3↑↑3 means, what 3↑↑↑3 means and what 3↑↑↑↑3 means, then we can describe what G1 is, all the way up to G64, all of it a process of iteration. And using just the power of these symbols and descriptive iteration, we can arrive at a number with 100% precision that arithmetic literally can’t even come close to describing. So when we say that we can’t picture Graham’s Number, I think that’s doing our brains a disservice.
@The_Story_Of_Us
@The_Story_Of_Us Жыл бұрын
@Oak Tree but we do legally own it. Whereas a number like TREE(3) is just so big we can’t describe it all, we don’t know how to arrive at that number via iterative process.
@The_Story_Of_Us
@The_Story_Of_Us Жыл бұрын
@Oak Tree I mean obviously they’re there. If you just divide 1 by Graham’s Number for example, but in terms of something practically applicable like Tree 3 or Graham’s Number, then yeah, that’d be cool.
@MABfan11
@MABfan11 Жыл бұрын
@@The_Story_Of_Us Bird's Array Notation can reach TREE(3) and beyond
@The_Story_Of_Us
@The_Story_Of_Us Жыл бұрын
@@MABfan11 How do we even begin to know these kind of things?…
@BokanProductions
@BokanProductions Жыл бұрын
You guys know how the new Webb Satellite from NASA allowed us to see more of the observable universe? I believe it's only a matter of time before we can see enough of the universe that Graham's Number could theoretically fit it in it.
@ottoweininger8156
@ottoweininger8156 6 жыл бұрын
The bit where he said we've narrowed it in from between 6 and Graham's Number, to between 11 and Graham's Number made me laugh.
@TheSpotify95
@TheSpotify95 Жыл бұрын
yeah, both 6 and 11 are tiny compared to even g1, let alone g64
@MABfan11
@MABfan11 7 ай бұрын
the new lower bound is 13
@AzertyWasTaken
@AzertyWasTaken 12 күн бұрын
I believe that the answer to the problem is a huge number but proving lower bounds is very hard.
@livinlicious
@livinlicious 10 жыл бұрын
The first digit of Grahams Number is 1. (in Binary)
@Gonzaga78
@Gonzaga78 9 жыл бұрын
Hurr Durr
@chrisroberts4599
@chrisroberts4599 9 жыл бұрын
The first digit of Graham's number is 1 in Unary, Binary and Ternary. What are the odds?
@PattyManatty
@PattyManatty 9 жыл бұрын
Chris Roberts In ternary it could be 2.
@chrisroberts4599
@chrisroberts4599 9 жыл бұрын
PattyManatty Nope, it's a one. 10^N always start with 1 in decimal, and 3^N will always start with 1 in ternary.
@PrimusProductions
@PrimusProductions 9 жыл бұрын
Graham's number is odd Graham's number is divisible by 3,9,27 and all powers of 3 up to Graham's number, log(3,G64) is an integer The last digit of Graham's number is 1 in Binary (because it is odd).
@megatrix500
@megatrix500 7 жыл бұрын
now... Gn↑↑↑↑↑...↑↑↑↑↑Gn. |---Gn times---| Let the universe collapse.
@Daniel-dc5mr
@Daniel-dc5mr 7 жыл бұрын
Megatrix500 wow
@Scias
@Scias 7 жыл бұрын
Just writing that endangers the existence of the universe, be careful lol
@eclipseskaters
@eclipseskaters 7 жыл бұрын
Still an infinite amount of numbers larger than that number.
@ashen_cs
@ashen_cs 7 жыл бұрын
Haven't even reached Aleph^1 yet
@abacussssss
@abacussssss 7 жыл бұрын
Less than g66.
@Dogebloxian
@Dogebloxian 2 жыл бұрын
"Graham's number is still closer to zero than it is to infinity"
@bunnyloverplayz1371
@bunnyloverplayz1371 Жыл бұрын
Well obviously all numbers are
@jd9119
@jd9119 4 ай бұрын
Zero and Graham's number are both numbers. Infinity isn't a number. It's a direction on a number line.
@jamesworley9888
@jamesworley9888 2 ай бұрын
Space is the only thing that we know for sure must be infinite, even if the universe isn't the space beyond and within it is. The only exception would be if somewhere we were surrounded by an infinite brick wall, and again there must be an infinite amount of space to contain it , so space is and must be infinite, there is no other possibility.
@jd9119
@jd9119 2 ай бұрын
@@jamesworley9888 That's not true. You're making an assumption.
@jamesworley9888
@jamesworley9888 2 ай бұрын
@@jd9119 There is no assumption, I never said ''the universe'' IE ''the stuff IN space is infinite. I said space itself is infinite and no 'one who can think for 5 seconds is able to disagree. Tell me what wall could exist that says ''space ends here'', such a thought is utter nonsense. Especially sense the wall couldn't exist without an infinite volume. Your head would have to be thicker than that wall to even think such a thing or second guess the logic. Tell me where the space ends and anyone can debunk you simply by asking what is beyond that??? The answer is and can only be more volume IE SPACE!!!! You DMF
@guepardiez
@guepardiez 5 жыл бұрын
Graham once taught a king how to play chess, and the king promised to give him g1 grains of rice for the first square on the chess board, g2 grains for the second square, g3 grains for the third square...
@apollog2574
@apollog2574 3 жыл бұрын
And so the universe was annihilated
@donovanshea3308
@donovanshea3308 3 жыл бұрын
And henceforth the Venezuelan currency was inflated beyond belief
@bachpham5025
@bachpham5025 2 жыл бұрын
Jokes aside. Even if the king promised to give him only 1 grain of rice for the first square, 2 grains for the second, 4 grains for the third, 8 grains for the forth…etc ; the king cant keep his promise with all the rice on earth!
@SirBojo4
@SirBojo4 Жыл бұрын
@@donovanshea3308 Consequently Uncle Sam embargo'd Venezuela to space-time's fabric decay!
@opmike343
@opmike343 7 жыл бұрын
Well, that escalated quickly...
@samarvora7185
@samarvora7185 5 жыл бұрын
Congratulations, dear sir! You've summed up the entire video!
@cate01a
@cate01a 3 жыл бұрын
yes! I've just been learning about n^^x and then when you've 3^^^^3 I'm going 'woah mate calm down' but then he comes in with g2=3(3^^^^3 ^'s)3 and I mean that's worthy of a stupidly large immense number but then it's g64! woah!
@Combobattle
@Combobattle 2 жыл бұрын
exponentiated quickly
@robertjarman3703
@robertjarman3703 2 жыл бұрын
@@cate01a g64! would be Graham´s Number, factorial. Go Graham´s Number times (Graham´s Number-1), so on all the way down to one, which is a catastrophically large number, so much bigger than Graham´s number that G64 might as well be 0 compared to it.
@karlfeldlager7662
@karlfeldlager7662 3 ай бұрын
@@robertjarman3703 Had you said 1 instead of 0, OK. But 0? 0 is stupidly tiny, I should say. Anyway, G64! is WAY below G65, for starts.
@squirrelknight9768
@squirrelknight9768 9 жыл бұрын
"Frankly, we pretty much nailed it!" Lol that cracked me up
@NoriMori1992
@NoriMori1992 9 жыл бұрын
Same! And his face when he says it is priceless.
@MrFrak0207
@MrFrak0207 7 жыл бұрын
SquirrelKnight I love that guy Hahahha
@sproins
@sproins Жыл бұрын
Other mathematicians explaining big numbers: You'd run out of space to write down all the digits. Matt Parker: You'd run out of pens in the universe.
@sebastianweigand
@sebastianweigand Жыл бұрын
Love the channel, keep up the great work!
@CertifiedAnything
@CertifiedAnything Жыл бұрын
$10.00
@Oskar5707
@Oskar5707 Жыл бұрын
dumbass
@denzelhobbs9982
@denzelhobbs9982 Жыл бұрын
​@@Oskar5707 little boy is triggered
@tornadoreaper
@tornadoreaper 11 ай бұрын
ten HUMDRED dollarrrs ????? scream 😱🎵😱🎵😱😱🎵🎵🎵
@ender5312
@ender5312 9 ай бұрын
GLOWING
@StardropGaming
@StardropGaming 8 жыл бұрын
Plot twist: Graham's Number + 2 is prime.
@martinshoosterman
@martinshoosterman 8 жыл бұрын
+StarDrop +Rip proving that.
@tannerearth0396
@tannerearth0396 6 жыл бұрын
(2^G)+1 is prime. I checked
@dennismuller1141
@dennismuller1141 6 жыл бұрын
@TannerEarth03 - GTA Boss actually, (2^n)+1 can only be prime if n is a power of 2. G is a power of 3, so (2^G)+1 can't be prime. primes in the form of (2^n) + 1 are called Fermat-primes btw
@reuben2011
@reuben2011 5 жыл бұрын
Wikipedia has a proof. The idea is that you can always factor a sum of odd powers (e.g. x^3+y^3). Now, if n were not a power of 2, then it has an odd prime factor p. So you can write n = kp where k is some integer. Thus, 2^n + 1 = 2^(kp) + 1 = (2^k)^p + 1^p and thus we've written 2^n+1 as a sum of odd powers (which factors).
@NeemeVaino
@NeemeVaino 5 жыл бұрын
@@dennismuller1141 Fermat numbers are of form 2^2^n+1 and there is no known primes for n>4. Mersenne numbers are of form 2^n-1 and contain large primes but very sparsely.
@marcelinozerpa3947
@marcelinozerpa3947 8 жыл бұрын
I got lost at "committee"
@FrostyLava
@FrostyLava 3 жыл бұрын
The "truest" comment
@TianXiaoMao
@TianXiaoMao 3 жыл бұрын
I got lost at 27. 🥵
@grantmayberry7358
@grantmayberry7358 5 жыл бұрын
8:30 "We pretty much nailed it as far as I'm concerned." Never mind the fact that that number is longer than the observable universe.
@BokanProductions
@BokanProductions Жыл бұрын
You guys know how the new Webb Satellite from NASA allowed us to see more of the observable universe? I believe it's only a matter of time before we can see enough of the universe that Graham's Number could theoretically fit it in it.
@TheSpotify95
@TheSpotify95 Жыл бұрын
@@BokanProductions Let's first try and find a way of writing down the full expanded value of 3↑↑↑3 (the tower itself reaches to the Sun), then go to 3↑↑↑↑3, then go from there.
@BokanProductions
@BokanProductions Жыл бұрын
@@TheSpotify95 Alright, I get it you don't need to explain more.
@emmeeemm
@emmeeemm 3 жыл бұрын
lol, I love that Graham's Number is so huge that it takes multiple mathematicians to explain it in one Numberphile video.
@asusmctablet9180
@asusmctablet9180 10 ай бұрын
And yet we know that Graham's Number has a Persistence of 2. Let THAT sink in.
@cameronpotter2493
@cameronpotter2493 9 жыл бұрын
The real problem makes wayyyyy more sense than the weird analogy about the committees and people thing.
@thomashudson9524
@thomashudson9524 3 жыл бұрын
Thank you
@xCorvus7x
@xCorvus7x 2 жыл бұрын
Care to describe it, while you're at it?
@NoriMori1992
@NoriMori1992 2 жыл бұрын
@@xCorvus7x Ron Graham describes it in another Numberphile video.
@Kunal29Chopra
@Kunal29Chopra 2 жыл бұрын
they actually didn't do a great job here, explaining the committee analogy, with the switches between Tony and Matt, also the fact that they were saying the analogy right from their head, but if read in a paper, the analogy is actually very easy to follow.
@adamqazsedc
@adamqazsedc Жыл бұрын
@@xCorvus7x Graham himself actually explained the number, the proper and more understandable way
@IVAN3DX
@IVAN3DX 8 жыл бұрын
2:38 Matt.exe had stopped working.
@JimmyLundberg
@JimmyLundberg 7 жыл бұрын
That's when the balding process began. :(
@achyuthramachandran7391
@achyuthramachandran7391 7 жыл бұрын
IVAN3DX I was reading this EXACTLY when he said "that that that that" 😂😂😂😂 killed me 😂😂😂😂😂
@SpaceChimpProduction
@SpaceChimpProduction 6 жыл бұрын
IVAN3DX
@dranreb2250
@dranreb2250 6 жыл бұрын
Right after seeing this, youtube crashed...
@mrsuperguy2073
@mrsuperguy2073 6 жыл бұрын
I didn't even notice!
@verdi8325
@verdi8325 2 жыл бұрын
This is my favourite KZfaq video of all time. Absolutely blows my mind.
@amogus5902
@amogus5902 3 жыл бұрын
I once heard an analogy to describe grahams number, and it kinda helps me to wrap my head around it- If you filled the entire universe with digits the size of a Planck length (0.00000000000000000000000000000161255 meters) and in those digits were universes filled with Planck length digits, you would not have enough digits to represent Grahams number. For reference, there are 10^186 Planck lengths in the universe
@philip8498
@philip8498 2 жыл бұрын
i dont think you would have enough digits in there to describe G1 in there. let alone G64
@vedantsridhar8378
@vedantsridhar8378 Жыл бұрын
@@philip8498 In fact there isn't even enough space to write down all the digits of 3^^^3! (^ stands for 'arrow'). There isn't even enough space to write down the number of digits in the number of digits. Even the number of digits in the number of digits in the number of digits. And you keep saying 'in the number of digits' 7.6 trillion times, before you get to a number which you can theoretically write down in our observable universe, because that number contains a few trillion digits.
@TheSpotify95
@TheSpotify95 Жыл бұрын
@@vedantsridhar8378 Indeed. Remember, 3↑↑4 contains 3.6 trillion digits (you'd need a whole library of books to be able to print this number in text), 3↑↑5 has a 3.6 trillion digit exponent (so already we can't describe the number of digits, as that number is more than the Planck volumes that could fit the Universe), and 3↑↑↑3 actually means 3↑↑(7.62 trillion). That's 7.62 trillion, not just 5.
@doemaeries
@doemaeries 10 жыл бұрын
In the next math test I just write 6
@knox140
@knox140 9 жыл бұрын
tfw the answer is 5
@JohannaMueller57
@JohannaMueller57 9 жыл бұрын
aha
@jabruli
@jabruli 9 жыл бұрын
-G64
@JohannaMueller57
@JohannaMueller57 9 жыл бұрын
Jakob Lippig why not -infinity < x < infinity? you guys just lack brain so much.
@jabruli
@jabruli 9 жыл бұрын
Cuz infinity contains x
@user-gi3ro9rm9k
@user-gi3ro9rm9k 7 жыл бұрын
i will give the man who tells me the entire graham's number a nobel peace prize for stopping the chaos going inside my head right now
@delilahfox3427
@delilahfox3427 7 жыл бұрын
Kyu Hong Kim That's physically impossible.
@vgamerul4617
@vgamerul4617 5 жыл бұрын
@@delilahfox3427 tf
@vgamerul4617
@vgamerul4617 5 жыл бұрын
@strontiumXnitrate killed 2852 kids' hope
@NotAGoodUsername360
@NotAGoodUsername360 5 жыл бұрын
Actually, quantum mechanics forbids this.
@Dexuz
@Dexuz 4 жыл бұрын
The universe may as well collapse and recreate itself a g63 times before that man ends.
@gupta-pw5xb
@gupta-pw5xb 6 жыл бұрын
*Infinity* : Here's my son
@j.hawkins8779
@j.hawkins8779 2 жыл бұрын
With TREE(3) being either the older or younger brother LOL
@TheJaredtheJaredlong
@TheJaredtheJaredlong 4 жыл бұрын
I still can't imagine what logical sequence of steps gives you such a massive number as an answer.
@tristo2005
@tristo2005 Жыл бұрын
Numbers can get really big really fast given the right equation
@turicaederynmab5343
@turicaederynmab5343 10 жыл бұрын
I've got such a headache after watching this, just thinking about a number with 1 digit larger makes my stomach hurt.
@chadcarl7554
@chadcarl7554 6 жыл бұрын
how ironic, my head hurts as well.
@ryan2-518
@ryan2-518 6 жыл бұрын
Suraj's opinion can die in a hole that's not ironic
@equilateraltriangle8619
@equilateraltriangle8619 6 жыл бұрын
This is an antidote (to end your life(no offense)) G64^^^^(G64^^^^G64xRayo’s number)^G64.
@davecrupel2817
@davecrupel2817 6 жыл бұрын
Stop thinking with your stomach 🤣
@jaredunrot717
@jaredunrot717 5 жыл бұрын
Sadly my mind has collapsed
@ckmishn3664
@ckmishn3664 7 жыл бұрын
According to the holographic principle the most data (bits) that can be stored in a volume is equal to the area of a bounding sphere in Planck lengths squared divided by 4. The visible universe is about 10^26 meters in length and Planck length is ~10^-35, so very roughly the visible universe can contain something like 10^122 bits of data before being "full" and collapsing into a black hole. Writing out, or otherwise listing the full expansion of a number without resorting to exponents, arrow-notation, recursion or other methods of compression requires a number of bits equal to the log of the number. Saying that your brain would collapse into a black hole if you had all the digits of Graham's Number in your head is one of the all-time biggest understatements. The entire visible Universe actually can't even contain the expansion of 3(three arrow)3. In fact even if you use exponents but just insist on printing out the exponents you still can't print out the expansion of 3(four arrow)3. Even resorting to arrow notation I think it's impossible to print out the expansion for the number of arrows any more than three levels lower.
@YanTales
@YanTales 7 жыл бұрын
but we can imagine it, and we are imagining it with our physical brain so it can exist and it does.
@ckmishn3664
@ckmishn3664 7 жыл бұрын
Gaming Power Cool. Please imagine it and tell me what the first digit of Graham's number is (in base 10).
@YanTales
@YanTales 7 жыл бұрын
Patrick Wise its between 0 and 9
@ckmishn3664
@ckmishn3664 7 жыл бұрын
Gaming Power So you know for a fact it's not a 9? Well that's something I guess.
@YanTales
@YanTales 7 жыл бұрын
Patrick Wise my bad, between 0 and 9 including 9.
@rxhx
@rxhx Жыл бұрын
Two questions though: 1) Why does Graham's number finish at that satisfying number G64? 2) Why/how do we know its last digits but not the first??
@Machame08
@Machame08 Жыл бұрын
Given the hidden synchronicities prevalent in math I think it would have almost seemed stranger for it to finish at some arbitrary number
@Travvypattyy
@Travvypattyy Жыл бұрын
Minecraf
@karlfeldlager7662
@karlfeldlager7662 3 ай бұрын
ad 2) Take powers of two: They end in 2,4,8,6,2,4,8,6 .. but start with 2,4,8,1,3,6,1,2,5,1,2,4,8,1 .. . At the end we can compute "modulo", at the front not.
@SnlDrako
@SnlDrako 5 жыл бұрын
Math. Where you can put it "it's somewhere between 6 and Grahams Number" and be considered precise AF, while messing up two decimal points in an equation and still fail in class. I love math.
@alexdabeast1892
@alexdabeast1892 8 жыл бұрын
(Graham's number)!
@horrorandgames
@horrorandgames 8 жыл бұрын
I think you would need a computer with a nuclear reactor for computing power 😂
@alexdabeast1892
@alexdabeast1892 8 жыл бұрын
:D
@matthewdaws9877
@matthewdaws9877 8 жыл бұрын
+AlexDaBeast g64! ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ g64!
@GarryDumblowski
@GarryDumblowski 8 жыл бұрын
+Wout Kops A nuclear reactor doesn't make any difference. It's just a power source. You could power any old computer with a nuclear reactor.
@TankleKlaus
@TankleKlaus 8 жыл бұрын
+MrAlen61 How about (number of sub-atomic particles in the observable universe)! ^googolplex ?
@romanr9883
@romanr9883 8 жыл бұрын
"we pretty much nailed it, as far as im concerned" hrhrhr
@jarchibald14
@jarchibald14 3 жыл бұрын
This is one of the best videos on youtube, I come back once every couple years and watch it to get again
@regan3873
@regan3873 4 жыл бұрын
2:15 I love this dude’s handwriting
@unclvinny
@unclvinny 8 жыл бұрын
I like to think about Graham's Number before I go off to sleep. Thanks, Numberphile!
@hymnodyhands
@hymnodyhands 6 жыл бұрын
unclvinny I thought I was the only one... Why count sheep when you can count endless towers of threes?
@blue9139
@blue9139 5 жыл бұрын
I think of utter obvilion lol
@idioting
@idioting 4 жыл бұрын
im definitely going to not sleep for 70 days after this
@cate01a
@cate01a 3 жыл бұрын
​@@hymnodyhands three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three three to the three to the three...
@Infinite_Omniverse
@Infinite_Omniverse 10 жыл бұрын
I used to be a mathematician like you, but then I took a Knuth's Up Arrow in the knee.
@blue9139
@blue9139 5 жыл бұрын
Oh no there are too many
@skair5425
@skair5425 4 жыл бұрын
A FELLOW SKRYIMMER
@claudioestevez1028
@claudioestevez1028 2 жыл бұрын
I just realized how precise all my mathematical answers have been. I've been nailing it all my life.
@professorgrimm4602
@professorgrimm4602 Жыл бұрын
"The answer is between 11 and Graham's number" Wow thanks, that narrows it down so much. Any day now we'll have the precise answer.
@nuklearboysymbiote
@nuklearboysymbiote 10 жыл бұрын
well nobody says it HAS to start with a 3. So... I started with a 1. And my brain didnt become a black hole because the end result (g64) is 1.
@norielsylvire4097
@norielsylvire4097 6 жыл бұрын
NukeML wow dont say
@KaichouClips
@KaichouClips 6 жыл бұрын
Has this been happening a lot? I thought it was just my browser messing up
@SAKURA8023o
@SAKURA8023o 6 жыл бұрын
View all Graham's number replies
@augustackerman9404
@augustackerman9404 6 жыл бұрын
*all 35 replies*
@felixmerz6229
@felixmerz6229 6 жыл бұрын
*click* *zoop* gone
@Lordidude
@Lordidude 8 жыл бұрын
Gra'ms Noombah
@utetopia1620
@utetopia1620 3 жыл бұрын
There's a lot of math jokes here, but I laughed more at your comment, mainly because I'm not a mathematician.
@hemanthgowda5269
@hemanthgowda5269 3 жыл бұрын
Lol
@idkwhattoputhere616
@idkwhattoputhere616 3 жыл бұрын
its just their accent
@PC_Simo
@PC_Simo Жыл бұрын
Donald Knuth: ”How many arrows do you want?” Ron Graham: ”Yes.”
@AceInAcademy
@AceInAcademy 2 жыл бұрын
loved the explanation once again, hope to grasp the complete number in one go.
@bastian_5975
@bastian_5975 9 жыл бұрын
Sum up this video in one sentence. Graham's number... IS OVER 9000!!!!
@coopergates9680
@coopergates9680 9 жыл бұрын
Bastian Jerome You mean (((9000!)!)!)!, or four consecutive factorials? Even that is less than g1 lollol
@bastian_5975
@bastian_5975 9 жыл бұрын
ok so I am correct In my asesment.
@coopergates9680
@coopergates9680 9 жыл бұрын
Bastian Jerome What game invented that phrase?
@bastian_5975
@bastian_5975 9 жыл бұрын
it wasn't a game, it was a man,and it was called Chuck Norris. He gave it to a show called Dragon Ball Z though. Goku had the line. someone asked what Goku's power level was when he went super saiyan and he responded "It's OVER 9000!!!"
@bastian_5975
@bastian_5975 9 жыл бұрын
ok it came from the show Dragon Ball-Z.
@ckmishn3664
@ckmishn3664 7 жыл бұрын
Prof. Graham did a much better job of explaining the underlying problem directly than either Tony or Matt did with the "committee" analogy.
@greatwhitesufi
@greatwhitesufi 7 жыл бұрын
Well, he made the number.
@tcocaine
@tcocaine 7 жыл бұрын
he neither made the number nor explored it. Anyone can simply do this themselves..
@zoewells3160
@zoewells3160 2 жыл бұрын
@@tcocaine Well no nobody "makes numbers" but you know what they meant
@adamqazsedc
@adamqazsedc Жыл бұрын
Agree
@MKD1101
@MKD1101 6 жыл бұрын
*I am already struggling to find g spot and now you want me to figure out g64 as well!!!!!!!*
@as7river
@as7river Жыл бұрын
Between 6 and G64. Matt: we've pretty much nailed it. That's a big nail, Matt.
@PhilBagels
@PhilBagels 9 жыл бұрын
I know the digits of Graham's number in base 3. They are 10000000...0000000.
@PhilBagels
@PhilBagels 9 жыл бұрын
And while I'm at it. the digits in Graham's Number in base 27 are also 100000...00000. And the same is true in base 3^3^3 (~7.6 trillion), and in base 3^3^3^3, etc.
@erichernandez6102
@erichernandez6102 8 жыл бұрын
I know Graham's number in base Graham's number: It's 10.
@coopergates9680
@coopergates9680 8 жыл бұрын
Eric Hernandez That's nice, unless you attempt to write G2, G7, G33, etc, etc. in that base.
@zoranhacker
@zoranhacker 8 жыл бұрын
Eric Hernandez umm isn't it 1?
@zoranhacker
@zoranhacker 8 жыл бұрын
zoranhacker oh right, it's not lol
@miklemikemuster
@miklemikemuster 7 жыл бұрын
"pretty much nailed it". I love these guys.
@eemikun
@eemikun 4 жыл бұрын
8:48 Tony foreshadowing the TREE(3) video that came out five and a half years later!
@yeetpathak639
@yeetpathak639 Жыл бұрын
1:12 This Madlad explains one of the most difficult to grasp nos. ever conceptualised with facing a clothes shop
@methanbreather
@methanbreather 10 жыл бұрын
things like this happen when you don't keep your mathemathicans busy.
@T0rche
@T0rche 10 жыл бұрын
Graham's Number ↑↑↑↑↑↑Graham's Number worth of arrows↑↑↑↑↑↑ Graham's Number
@BradenBest
@BradenBest 8 жыл бұрын
G [G + 2] G From an abstraction of en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation where [N] = ↑(N-2)
@norielsylvire4097
@norielsylvire4097 6 жыл бұрын
T0rche (g65)
@thehiddenninja3428
@thehiddenninja3428 5 жыл бұрын
Smaller than G66
@pcarlisi
@pcarlisi 3 жыл бұрын
July 8 2020, RIP Ron Graham, the big number man...
@haddenindustries2922
@haddenindustries2922 6 жыл бұрын
are you home between 7 a.m. and Graham's number?
@GarrettBorden
@GarrettBorden 7 жыл бұрын
It's crazy how incomprehensible Graham's number is. It's a shame that some people can't grasp it. "Is a googolplex bigger?" Lol. G1 dwarfs googolplex. Like it's not even comparable. And G2 is exponentially larger than G1. And so on. G63 might as well be "1" compared to G64! It's just mind boggling but I love this stuff. I started watching stuff on horizontal arrow notation and it's just ridiculous how quickly numbers start growing!
@sebastianschon3141
@sebastianschon3141 6 жыл бұрын
And then realize that this number - Grahams number - Is ridiculously small - compared to G65.
@danielw.4876
@danielw.4876 5 жыл бұрын
If you walked a googolplex miles, and then you walked Graham's number miles, they would both feel like the same amount since your brain would have no way of remembering how long you had walked for.
@lindsaytang1017
@lindsaytang1017 5 жыл бұрын
G63 might as well be 0
@nsprphg
@nsprphg 5 жыл бұрын
Are there more angles in a circle than G64?
@ZyphLegend
@ZyphLegend 5 жыл бұрын
Honestly, saying that G2 is exponentially larger than G1 sounds like an understatement. I feel like we need a new word to describe the absolutely mind bobbling distance between the two.
@bluey1328
@bluey1328 8 жыл бұрын
g64? dang even math trying to get in on that nintendo power...
@STANKYCHEEZEMAYNE
@STANKYCHEEZEMAYNE 4 жыл бұрын
G TO THE POWER OF SIXTY FOOOOOOOOOOOOOOOOOOOOOOUR
@therealjoediaz
@therealjoediaz 4 жыл бұрын
They have a stack of g
@Attaxalotl
@Attaxalotl 3 жыл бұрын
The true biggest number: N64
@firozfaroque7521
@firozfaroque7521 6 жыл бұрын
Your videos are informative it makes me fall in love with numbers again:) Thank you
@subscribefornoreason542
@subscribefornoreason542 4 жыл бұрын
Here's a bigger number- Behold...G65 Now I just need recognition
@grainfrizz
@grainfrizz 10 жыл бұрын
Infinity is larger than Grahams number but infinity is for sissies.
@VaraNiN
@VaraNiN 10 жыл бұрын
Is there a way how Graham got to this stupidly big number, or has he just made it up and said the anwer just can't be higher than this?
@DonSunsetAtDawn
@DonSunsetAtDawn 10 жыл бұрын
He probably proved it.
@Maxuro
@Maxuro 10 жыл бұрын
Man really... is this supposed to be a serious comment? Or you are just trying to be fun? Because you're looking more stupid than funny. You really think that exists a mathematical theorem proven by just saying "Hey MAN! i made up this PRECISE and EXACT number, i'm sure that the solution of this question is under this number MAN because WHATEVER MAAAAAN, IT'S COOL!" Seriously?
@VaraNiN
@VaraNiN 10 жыл бұрын
Raumo Yes I am serious. Why cant Grahams Number be the same just with 4s or 2s or 5s or whaterver at the start? And why is it 64 times and not 63 or 65? I just don't see any way how you can come to such a gigantic number. Of course he had some theorys that said how large the number approx. has to be, but would it matter if I add or subtract 1? Or 2? Or a million? A trillion? A google? Or even a googleplex? Would this really change Grahams number in a way that it affects the whole theorem? That's what I meant to say with my original comment. But if you can explain to me why it starts with a 3 and has 64 iterations and that it WOULD matter if I would subtract 1 that's fine. I will be happy to accept it. (But please without starting to rage again, ok?) P.S: Our argument seems kinda' pointless, because I think someone has proven that the solution is between 13 and 2^^^6 (2 triple-arrow 6). Still a gigantic number but much, much, MUCH smaller than Graham's Number, I think we both can agree on that^^
@gocity9
@gocity9 10 жыл бұрын
obviously he proved it otherwise it wouldn't be so widely known.
@Timmoppy
@Timmoppy 10 жыл бұрын
That was explained in the video as to how he got there..
@alexanderhuber5830
@alexanderhuber5830 6 жыл бұрын
"We are narrowing in" - I love this british sense of humour; keep going guys-
@hamedhosseini4938
@hamedhosseini4938 4 жыл бұрын
Mother: why don't you hang out with neighbors kid? Neihbors kid:
@Graverman
@Graverman 3 жыл бұрын
his IQ 1/g64
@jagjitdusanjh8356
@jagjitdusanjh8356 10 жыл бұрын
What would be the final digit of Graham's Number in Base 12?
@MrCubFan415
@MrCubFan415 7 жыл бұрын
Either 3, 6, 9, or 0. Not sure which, though.
@theleftuprightatsoldierfield
@theleftuprightatsoldierfield 7 жыл бұрын
Mr. Cub Fan 415 I'm pretty sure it's 3
@arnold84120
@arnold84120 6 жыл бұрын
it must be within this set s = { 0,1,2,3,4,5,6,7,8,9,A,B} where A and B are the eleventh and twelfth digit in base 12
@FaceySmile
@FaceySmile 6 жыл бұрын
you don't say
@anwarinianwarini2660
@anwarinianwarini2660 6 жыл бұрын
E
@blazintitan277
@blazintitan277 10 жыл бұрын
Yup! We totally nailed it guys! Time for a coffee break!
@andrewbloom7694
@andrewbloom7694 Жыл бұрын
5:15 "And all people appear in....I forget" Ah yes. The Parker Graham's Number Analogy
@dash0173
@dash0173 10 жыл бұрын
Oh and what do you get when you multiply Grahams number by Grahams numer?
@Infraclear
@Infraclear 10 жыл бұрын
graham's number^2...
@dash0173
@dash0173 10 жыл бұрын
wrong
@bangpaf2328
@bangpaf2328 10 жыл бұрын
(Graham's number)^2
@TheTruthandEmotia
@TheTruthandEmotia 10 жыл бұрын
Grahams number to the power of grahams number
@ligueardent
@ligueardent 10 жыл бұрын
2Graham's number
@l34052
@l34052 7 жыл бұрын
I'm really bad at maths, I mean really hopeless but I've been fascinated by grahams number since I first heard about it a few years ago. There's just something really intriguing and fascinating about large numbers and the maths behind them. This and quantum mechanics are the 2 things I'd most dearly love to understand in life.
@andreasdluffy1208
@andreasdluffy1208 4 жыл бұрын
Now dont hate me. But I think quantum physics is much more important then math. This type of math is kinda useless in my opinion
@abdulazis400
@abdulazis400 2 жыл бұрын
@@andreasdluffy1208 useless type of math WILL BE useful given enough time.
@dailybroccoli7538
@dailybroccoli7538 2 жыл бұрын
@@abdulazis400 and by those time, Quantum physics would have been printed in high school text books. Higher Maths is not useful period
@newwaveinfantry8362
@newwaveinfantry8362 2 жыл бұрын
You're really ignorant if you would generalize all of higher mathematics as useless.
@MABfan11
@MABfan11 Жыл бұрын
@@abdulazis400 wonder what Googology will be useful for...
@g07denslicer
@g07denslicer 5 жыл бұрын
5:48 he was about to say hiker pubes.
@giansieger8687
@giansieger8687 6 жыл бұрын
a huge step😂😂. from 6-Graham‘s number to 11-Graham‘s number👏🏼👏🏼🔥😂
@michaelhartley6791
@michaelhartley6791 8 жыл бұрын
My year 11 class enjoyed this!!!
@Jiimys187
@Jiimys187 5 жыл бұрын
Michael Hartley but you’re not even a teacher
@d3generate804
@d3generate804 4 жыл бұрын
Have you graduated yet?
@9RedJohn9
@9RedJohn9 9 жыл бұрын
7:20 "This is just AH" best part!
@EliasMheart
@EliasMheart 2 ай бұрын
Funny way to threaten someone as a weird supervillain: "Hands up, or I'll think of Graham's Number, and this whole area will go down!!" xD
@NeemeVaino
@NeemeVaino 5 жыл бұрын
Explaining this to kids: Forget about g64, let's talk g1, the 3↑↑↑↑3: Smallest thing that can theoretically have any meaning is Planck length cube, largest meaningful volume is observable Universe. How much could one contain others? Well, something less than googol², not even googolplex that is 10^googol. So, googolplex is a nice number that we can tell how big it is - it has googol digits. About g1 we cannot do that. We cannot even tell how big is the number that tells how big it is. If we start to ask how big is the number that tells how big is the number that tells how big is the number ... so on, for how long? We cannot tell how long. How big is the number that tells how long it takes? No. How big is the number that tells how big is the number that tells... ... how long it takes. Still no. We cannot tell that. Meaning of words do not last that long. That's just g1, kids.
@mustafamkamel
@mustafamkamel 10 жыл бұрын
One of the things I don't understand: why did Graham stop at g64? I think it's already proven that you can't even imagine how big a number it is, so why don't go higher that 64? Also, Why is it based on 3?
@Nebukanezzer
@Nebukanezzer 5 жыл бұрын
Those questions you'd need to read his paper for.
@wheresmyoldaccount
@wheresmyoldaccount 8 жыл бұрын
Even plain old 2^64 -1 from the chessboard rice problem is a very large number (18 quintillion and something) to imagine. Once we get to 3↑↑↑3 , which is 3 with a power tree of 3's 7.6 trillion digits high... my brain gives in. 3↑↑↑3 is a number bigger than 10^3000000000000, whereas 10^80 accounts for the number of atoms in the known universe. And that number 3↑↑↑3 is way way way way beyond minuscule compared with 3↑↑↑↑3 (G1) which is way way way way way beyond minuscule compared with Graham's number.
@ecksdee9768
@ecksdee9768 2 жыл бұрын
and to think other numbers like TREE(3) and SSCG(3) make Graham's Number look like 0 in comparison really blows your mind on how big numbers can get
@hyrumleishman3624
@hyrumleishman3624 2 жыл бұрын
In conclusion: Numbers are ridiculous.
@TheSpotify95
@TheSpotify95 Жыл бұрын
Actually, 3↑↑5 is bigger than your 10^(large number) that you describe, since 3↑↑5 is bigger than googolplex. At least you can actually wrote down the full tower length of 3↑↑5 on a piece of paper. You can't do that with 3↑↑↑3 (3↑↑7.62 trillion).
@jamessmith84240
@jamessmith84240 2 жыл бұрын
Can we take a moment to appreciate how lucky we are to have our human brains? I just realised we have the power conceive ideas larger than the universe we live in! Crazy stuff.
@scottsterner4091
@scottsterner4091 Жыл бұрын
my favorite thing about graham’s number is that, despite how ridiculously unfathomably massive all of the operations required to arrive at graham’s number may be, none of those operations increase by as much as just multiplying graham’s number by 2
@jfb-
@jfb- 10 жыл бұрын
And what happens when you take g(graham's number) and apply the Ackerman function to it?
@electroflame6188
@electroflame6188 7 жыл бұрын
+IdontHaveAnyGoodNameIdeasButIHaveATaco You have no idea what the Ackerman function is, do you?
@arkues1161
@arkues1161 7 жыл бұрын
jfb-1337 your just a kid thay thinks he learned something cool but doesn't actually gets it
@halo4224
@halo4224 6 жыл бұрын
it's still smaller than g_65
@delrasshial7200
@delrasshial7200 5 жыл бұрын
You fuckers
@GirGir183
@GirGir183 5 жыл бұрын
You get sued by Ackerman.
@dragoncrystal24
@dragoncrystal24 10 жыл бұрын
Thanks for explaining this! Graham's number is now my new favourite number, and I can't wait to see what my math teacher initially thought about it (he's guaranteed to have heard about it before, he's a math addict)
@matthewflorio2705
@matthewflorio2705 5 жыл бұрын
That number is an absolute *UNIT*
@rohitpaul805
@rohitpaul805 2 жыл бұрын
The simple fact that talking about numbers like the G64, TREE(3) or Rayo's number, it makes me feel that how close we are getting to infinity, but then it comes to my mind that G64, TREE(3) or Rayo's number is 0.000....infinite zeroes...1% of infinity. These things are beyond the levels of human cognition but I love it
@dash0173
@dash0173 10 жыл бұрын
After a while, numbers just get to be scary...
@TheAed38
@TheAed38 10 жыл бұрын
The crazy thing is that as Carl Sagan puts it "A googolplex is precisely as far from infinity as is the number 1." As big as it is, the same thing goes for Graham's number.
@WomanSlayer69420
@WomanSlayer69420 10 ай бұрын
I can’t believe it! The number… it’s over 9000!!!
@jaggers7681
@jaggers7681 5 жыл бұрын
Grahams number is so freakin huge that no matter how small you write the number it would still be fit inside the observable universe
@slidenerd
@slidenerd 9 жыл бұрын
Chuck Norris came in Graham's dream and told him to try drawing squares and cubes with 2 colored pens:) He said "try it and you ll find my favorite number"
@MrRandomcommentguy
@MrRandomcommentguy 6 жыл бұрын
Chuck Norris counted to Graham's number. Twice.
@Perririri
@Perririri 4 жыл бұрын
Shaggy at only 8% power can defeat Chuck
@Orange-wf8wh
@Orange-wf8wh 4 жыл бұрын
Janeen Phayne wrong
@dtripakis
@dtripakis 10 жыл бұрын
I always thought the largest meaningful number was the number of atoms/electrons/whatever, in the whole universe. I was so wrong!
@flixyy
@flixyy 6 жыл бұрын
.
@___CANNIBAL___
@___CANNIBAL___ 15 күн бұрын
"How many sets you have left on the machine?" Me: "Between 1 and Graham's number of sets"
@nqnqnq
@nqnqnq 2 жыл бұрын
"the number of digits needed to describe this number, you couldn't describe". imagine this quote nested on itself g63 (or g62, i guess) times. that would do justice to describe g64.
@sigalig
@sigalig 10 жыл бұрын
g-2=3(g-1 arrows)3.....g-sus.
@angelinahinkley9730
@angelinahinkley9730 7 жыл бұрын
sigalig g-2=3 g-1⬆ 3g-sus
@trentedwards6444
@trentedwards6444 10 жыл бұрын
I actually thought about something like this during class the other day, I was seeing the highest number I could get on the calculator with the least number of digits. This was how I did it ^-^
@youregonnaletityeetyouaway2882
@youregonnaletityeetyouaway2882 2 жыл бұрын
fun fact: g(64) wasn't the number in grahams original paper, the original upper bound was actually much lower than that but martin gardner used g(64) to make it easier to explain so he could popularise it. the upper bound is now even lower (i think 2^^2^^2^^9?) and the lower bound has also changed to 13
@finmat95
@finmat95 9 ай бұрын
from 11 to 13? that's a huge improvement!
@MABfan11
@MABfan11 7 ай бұрын
the original number is roughly equal to G(7), which is why it has got the nickname Little Graham in the Googology community
@mikefitzgerald41
@mikefitzgerald41 2 жыл бұрын
If you took Graham’s number to the power of Graham’s number - it it’s no closer to infinity than 0 is
@merloon
@merloon 10 жыл бұрын
Just have to ask the question that has to be on everyone's mind... how does Graham's number stack up against the googolplex?
@numberphile
@numberphile 10 жыл бұрын
no contest
@93MHD
@93MHD 9 жыл бұрын
the ratio between Graham's number and googolplex is approximately equal to Graham's number ;)
@93MHD
@93MHD 9 жыл бұрын
if you raise googolplex to the googolplex power googolplex times that wouldn't compare the googolplex root of Graham's number!
@dementy9
@dementy9 9 жыл бұрын
Timotheus24 well i could replace 3 with gogolplex an do the g64 with it right? :D
@Quendarth
@Quendarth 9 жыл бұрын
DenolcTV Why stop there when you can replace 3 with googolplex and then do g(googolplex)?
TREE vs Graham's Number - Numberphile
23:50
Numberphile
Рет қаралды 1,2 МЛН
The Daddy of Big Numbers (Rayo's Number) - Numberphile
15:26
Numberphile
Рет қаралды 1,9 МЛН
MOM TURNED THE NOODLES PINK😱
00:31
JULI_PROETO
Рет қаралды 30 МЛН
Is it Cake or Fake ? 🍰
00:53
A4
Рет қаралды 14 МЛН
I Need Your Help..
00:33
Stokes Twins
Рет қаралды 168 МЛН
The shape that should be impossible.
26:01
Stand-up Maths
Рет қаралды 315 М.
The Boundary of Computation
12:59
Mutual Information
Рет қаралды 948 М.
How many chess games are possible? - Numberphile
12:11
Numberphile
Рет қаралды 3 МЛН
Beyond Infinity Number Comparison
7:00
Reigarw Comparisons
Рет қаралды 33 МЛН
How Big is Graham's Number? (feat Ron Graham)
8:23
Numberphile
Рет қаралды 1,5 МЛН
Ron Graham and Graham's Number (extra footage)
12:37
Numberphile2
Рет қаралды 193 М.
The Enormous TREE(3) - Numberphile
9:00
Numberphile
Рет қаралды 1,7 МЛН
Skewes' Massive Number - Numberphile
10:26
Numberphile
Рет қаралды 1,2 МЛН
The Difference of Two Squares
9:11
Stand-up Maths
Рет қаралды 338 М.
The LONGEST time - Numberphile
12:04
Numberphile
Рет қаралды 1,4 МЛН
Где раздвижные смартфоны ?
0:49
Не шарю!
Рет қаралды 689 М.
ПК с Авито за 3000р
0:58
ЖЕЛЕЗНЫЙ КОРОЛЬ
Рет қаралды 2 МЛН
Не обзор DJI Osmo Pocket 3 Creator Combo
1:00
superfirsthero
Рет қаралды 1,3 МЛН