Common mode chokes: There is more than meets the eye

  Рет қаралды 4,365

Sam Ben-Yaakov

Sam Ben-Yaakov

22 күн бұрын

#EMI #switchmpde #noise #PWM #coupledinductor

Пікірлер: 35
@SergiuCosminViorel
@SergiuCosminViorel 17 күн бұрын
splitting the wires, i did not do in this regard, so not even suspecting it. i won't do modelling, ever, but i learned here that even for such apparent simple circuit, measurements and some empirical approach are needed. thank you, for bringing this!
@sambenyaakov
@sambenyaakov 16 күн бұрын
Thanks for comment
@sambenyaakov
@sambenyaakov 15 күн бұрын
"splitting the wires" this is to explain that when measuring the impedance form input to output impedance it is like one wire. Nobody is splitting wires. What a relief that you do not do this.
@Cydget
@Cydget 15 күн бұрын
Good stuff. This topic wasn't taught to me in school, and even people at work were not able to articulate the concept that well to this level of depth. Most of the testing we do is kind of like the shotgun approach where we just try a bunch of things/values and see if it gives us a lower score. I get that engineering is a lot of that due to how complex these systems get, but I'm always trying to get a better understanding even if the shotgun method gives faster results. If you do a part two, maybe mention some practical issues when measuring such as noise floor( how to reduce it)/ wire length impact(why does the standard have a minimum) / grounding plate locations/orientations/ type of wire+connectors (romex/thhn/wago)
@sambenyaakov
@sambenyaakov 14 күн бұрын
Thanks fo feedback.
@anatolimordakhay3899
@anatolimordakhay3899 18 күн бұрын
Always a pleasure to watch your videos, interesting and very educating. Glad I got the opportunity to attend your classes in person at BGU as a student some years ago, and that I still get the chance to learn from your videos 👏
@sambenyaakov
@sambenyaakov 17 күн бұрын
👍😊🙏Nice to read from you. Where are you at?
@Duracellmumus
@Duracellmumus 9 күн бұрын
Thank u for show that cruves, i have a shot now for why this is not working well with high speed dc load. In my wiev this type common mode chokes are do better job before the diode bridge at AC side.
@sambenyaakov
@sambenyaakov 8 күн бұрын
I am showing a DC (battery) source
@fedep2753
@fedep2753 20 күн бұрын
very interesting, as always. thank you.
@sambenyaakov
@sambenyaakov 19 күн бұрын
Thanks
@zorz67
@zorz67 20 күн бұрын
Dear Professor Ben-Yaakov, thank you so much for your video. Very interesting indeed. The discrepancy in the simulations with the Wurth model is 6dB in attenuation, which, I believe, might be explained with the 2x factor that is probably not accounted for in the 50 Ohm to 50 Ohm impedance matching. You have 6dB attenuation at DC in sims and 0dB in measurement. Also, it seems to me the impedance model is not correctly taking into account the inductor DCR. The measured impedance is one order of magnitude higher at DC.
@sambenyaakov
@sambenyaakov 20 күн бұрын
Thanks for input.
@esijal
@esijal 18 күн бұрын
Excellent presentation professor 🙏
@sambenyaakov
@sambenyaakov 16 күн бұрын
Many thanks!
@purerhodium
@purerhodium 20 күн бұрын
For the resistive component of the impedance, it works out if you assume that each winding has a resistance of 168 mΩ. In parallel (common mode), the resistance of the choke is 84 mΩ, and in series (differential mode), it works out to 336 mΩ. I'm not sure if this is how it works in reality, but presumably it is how the LTspice model is programmed.
@sambenyaakov
@sambenyaakov 20 күн бұрын
There is though a discrepancy between the data sheet and the LTspice model, isn't there?
@klauskragelund8883
@klauskragelund8883 19 күн бұрын
@@sambenyaakov Datasheet is max value. Simulation model uses characterized data, so typical.
@sambenyaakov
@sambenyaakov 19 күн бұрын
@@klauskragelund8883 The difference is not just in the magnitude but in shape, especially at high frequency, And, since when the datasheets show max values in plots?
@SMV1972
@SMV1972 20 күн бұрын
Спасибо Вам! Прекрасный урок!
@sambenyaakov
@sambenyaakov 20 күн бұрын
Thanks
@mroverlin1
@mroverlin1 11 күн бұрын
What is the name of the standard? Where can it be found? Thank you for the video.
@sambenyaakov
@sambenyaakov 10 күн бұрын
There are many types and classes. The most famous CISPR25
@tonyh6309
@tonyh6309 19 күн бұрын
Wouldn't the impedance decline be better explained by inductor having an SRF at approx 2MHz due to parasitic parallel capacitance? I calculate 8.8pF (arising from inter-winding plus winding-core-winding capacitances) which doesn't seem unreasonable given the size of the windings and core. If I understood you, you showed the permeability plots for 3F3 because it also, helpfully included the plot of imaginary permeability; the actual material used for this part could have a somewhat higher frequency characteristic before its permeability starts to decline. That aside I found it helpful and well presented explanation of the issues. The imaginary permeability component was definitely new to me.
@sambenyaakov
@sambenyaakov 19 күн бұрын
Capacitance can indeed emulate the drop and this is how simulation models are built. But the physics is that the permeability decreases and this is the real reason for the drop in response at high frequency. On top of it there might be the resonances due to parasitic capacitances.
@tonyh6309
@tonyh6309 18 күн бұрын
​@@sambenyaakov Sorry, but I'm pretty sure that your explanation for this *specific* case is wrong. The Wurth part you chose has a *nanocrystalline* core which has significantly different complex permeability characteristics to conventional ferrites. In particular it has a much broader frequency range, 200kHz to 200MHz according to a Wurth presentation. Unfortunately I can't find the permeability data on Wurth's site but I found a good paper at pubmed (NIH). I can't post a link here but searching for 29360754 will easily find it. Figures 3 and 7 are particulary interesting - the first showing that u'' is almost as high as u' from low frequencies unlike ferrites which have low u'' losses at low frequencies. (This might, in part, explain the higher than expected resistance at lower frequencies). Fig 7 shows that Z continues to rise steadily well past the frequency where XL plummets due to u' falling. So the impedance curve for the Wurth CM choke you showed is almost certainly explained by the parasitic parallel capacitor dominating above 2MHz, declining at 20dB/decade. Another data point is this presentation by Wurth themselves on their CM chokes: see from 32 : 57 kzfaq.info/get/bejne/r7Fza7yhlauddmw.html At 33 : 20 he states "..where the impedance drops due to the capacitance effect". Ok he could have got it wrong or was avoiding the complexities of permeability variance with frequency but I doubt it. Note that the part he is showing is an MnZn ferrite, not nanocrystalline. Finally why isn't the leakage inductance impedance similarly affected by the collapse in u' after 2MHz? It continues to rise linearly, well past 2MHz. This doesn't detract from the points you were making about the properties of ferrites which encouraged me to look into far more than I expected.
@tonyh6309
@tonyh6309 18 күн бұрын
@sambenyaakov Sorry, but I'm pretty sure that your explanation for this *specific* case is wrong. The Wurth part you chose has a *nanocrystalline* core which has significantly different complex permeability characteristics to conventional ferrites. In particular it has a much broader frequency range, 200kHz to 200MHz according to a Wurth presentation. Unfortunately I can't find the permeability data on Wurth's site but I found a good paper at pubmed (NIH). I can't post a link here but searching for 29360754 will easily find it. Figures 3 and 7 are particulary interesting - the first showing that u'' is almost as high as u' from low frequencies unlike ferrites which have low u'' losses at low frequencies. (This might, in part, explain the higher than expected resistance at lower frequencies). Fig 7 shows that Z continues to rise steadily well past the frequency where XL plummets due to u' falling. So the impedance curve for the Wurth CM choke you showed is almost certainly explained by the parasitic parallel capacitor dominating above 2MHz, declining at 20dB/decade.
@tonyh6309
@tonyh6309 18 күн бұрын
@@sambenyaakov YT suppressed my comment so I split it into two parts: Another data point is this presentation by Wurth themselves on their CM chokes: see from 32:57 kzfaq.info/get/bejne/r7Fza7yhlauddmw.html At 33:20 he states "..where the impedance drops due to the capacitance effect". Ok he could have got it wrong or was avoiding the complexities of permeability variance with frequency but I doubt it. Finally why isn't the leakage inductance impedance similarly affected by the collapse in u' after 2MHz? It continues to rise linearly, well past 2MHz. This doesn't detract from the points you were making about the properties of ferrites which encouraged me to look into far more than I expected.
@tonyh6309
@tonyh6309 18 күн бұрын
@@sambenyaakov YT make it incredibly difficult to comment - this is my third attempt splitting up my reply: @sambenyaakov Sorry, but I'm pretty sure that your explanation for this *specific* case is wrong. The Wurth part you chose has a *nanocrystalline* core which has significantly different complex permeability characteristics to conventional ferrites. In particular it has a much broader frequency range, 200kHz to 200MHz according to a Wurth presentation. Unfortunately I can't find the permeability data on Wurth's site but I found a good paper at pubmed (NIH). I can't post a link here but searching for 29360754 will easily find it. Figures 3 and 7 are particulary interesting - the first showing that u'' is almost as high as u' from low frequencies unlike ferrites which have low u'' losses at low frequencies. (This might, in part, explain the higher than expected resistance at lower frequencies).
@Jasfon
@Jasfon 20 күн бұрын
Saludos !! Para cuando un canal en español ?? Por favor !!!!!!!!
@sambenyaakov
@sambenyaakov 20 күн бұрын
Have you tried Spanish subtitles ?
@Jasfon
@Jasfon 19 күн бұрын
@@sambenyaakov voy a ver si existe
@tamaseduard5145
@tamaseduard5145 20 күн бұрын
👍🙏❤️
@sambenyaakov
@sambenyaakov 20 күн бұрын
Thanks
Current sharing of parallel connected power supplies by the droop method
28:51
Faulty Starlink Wireless Router | Can I Fix It?
58:10
Buy it Fix it
Рет қаралды 52 М.
когда повзрослела // EVA mash
00:40
EVA mash
Рет қаралды 3,6 МЛН
Alat Seru Penolong untuk Mimpi Indah Bayi!
00:31
Let's GLOW! Indonesian
Рет қаралды 14 МЛН
МАМА И STANDOFF 2 😳 !FAKE GUN! #shorts
00:34
INNA SERG
Рет қаралды 4,2 МЛН
Khó thế mà cũng làm được || How did the police do that? #shorts
01:00
ELECTRIC CIRCUITS PART 1 [ ISIZULU ]
1:16:50
Isinamuva Tutoring
Рет қаралды 15 М.
EMI Filters on Power Supplies: Design & Application Guide
15:06
Altium Academy
Рет қаралды 13 М.
Transformer saturation and gapped core current transformer
17:19
Sam Ben-Yaakov
Рет қаралды 2,9 М.
How to Pass Conducted EMC and Immunity. 5 Tricks
23:40
Dr. EMC
Рет қаралды 4,2 М.
Common Mode Current, How do these Chokes work? (013c)
14:30
Electronics for the Inquisitive Experimenter
Рет қаралды 39 М.
The Most Confusing Part of the Power Grid
22:07
Practical Engineering
Рет қаралды 1,2 МЛН
Gain margin in PWM converters
22:01
Sam Ben-Yaakov
Рет қаралды 3,1 М.
How 3 Phase Transformers Work - why we need them
24:24
The Engineering Mindset
Рет қаралды 367 М.
Miller Effect (16-Transistors)
14:57
Aaron Danner
Рет қаралды 2,6 М.
когда повзрослела // EVA mash
00:40
EVA mash
Рет қаралды 3,6 МЛН