#2 BB 350 Water and Buffers, Part 1 - Kevin Ahern's Biochemistry Online

  Рет қаралды 25,083

Kevin Ahern

Kevin Ahern

12 жыл бұрын

Two BIG new items for pre-meds!
A. Book - Kevin and Indira's NEW Guide to Getting Into Medical School - www.davincipress.com/123.html
B. Audio course on Listenable - listenable.io/web/courses/143...
1. My lectures with The Great Courses - www.thegreatcourses.com/cours...
2. My Lecturio videos for medical students - www.lecturio.com/medical-cour...
3. Contact me at kgahern@davincipress.com / Friend me on Facebook (kevin.g.ahern)
4. Download my free biochemistry book at www.davincipress.com/freeforal...
5. Take my free iTunes U course at itunes.apple.com/us/course/bi...
6. Course video channel at kzfaq.infovi...
7. Check out all of my free workshops at davincipress.com/freebies.html
8. Check out my Metabolic Melodies at www.davincipress.com/
9. My courses can be taken for credit (wherever you live) via OSU's ecampus. For details, see ecampus.oregonstate.edu/soc/ec...
10. Course materials at davincipress.com/bb450.html
Lecture Highlights
Water/Acids
1. To understand biochemistry, it is essential to understand water and the alterations of it (pH, for example) that affect biological molecules.
2. Water is a bent molecule. Electrons are not shared equally by oxygen and the hydrogens, resulting in the hydrogens having a partial positive charge and the oxygen having a partial negative charge. These partial charges give rise to hydrogen bonds. Note that the attraction of a nucleus for electrons is measured by electronegativity. The higher the electronegativity, the stronger the attraction for electrons.
3. Ionic (polar) compounds will be pulled apart in water. We say that they dissolve. In this case, the ions (charged molecules, such as K+) are surrounded by the correspondingly opposite partial charge of the water molecule. Thus, K+ is most closely associated with the oxygen component of the water molecule since the oxygen is the most negatively charged. This is an example of an ion-dipole interaction and is very common in water.
4. Bond energies are measures of the amount of energy it takes to break a bond. Covalent bonds (such as those between oxygen and hydrogen in water) are extraordinarily strong compared to hydrogen bonds (by a factor of about 20). Nonetheless, hydrogen bonds contribute significantly to the properties of water and biological molecules.
5. We use the term hydrophilic to refer to compounds that are soluble in water and hydrophobic to refer to compounds that are not soluble in water. The term 'amphiphilic' or amphipathic is used to refer to compounds that have parts of them that 'like' water and parts of them that repel water. Soaps are a perfect example of an amphiphilic compound. We shall see later that the lipids in membranes are amphiphilic.
6. Many biological compounds are hydrophilic. Examples include sugars, amino acids, nucleic acids, and most proteins. Fat is the predominant hydrophobic compound found in cells. Fatty acids (which are components of fats) are amphiphilic.
7. Hydrogen bonds can occur between many different molecules. All it takes is a hydrogen with a partial positive charges and a nearby molecule with a partial negative charge.
8. Hydrogen bonds are responsible for giving water its extremely high melting and boiling points for a molecule of its small molecular weight.
9. In water, molecules like acids can donate protons (H+) to the solution. This has a drastic effect on the properties of water. On the other side, bases (like hydroxides) can accept protons found in water. The proton concentration is therefore very critical. We measure the proton concentration using a term called pH.
10. Water ionizes (loses a proton) at a very low rate. In pure water, the rate is one ionization per 10 million water molecules. Water is therefore a weak acid (acids are compounds that lose protons).
11. By contrast, HCl (hydrochloric acid) is a strong acid. If you put 10 million molecules of HCl in water, all 10 million molecules will dissociate into H+ and Cl- ions.
12. Many acids we find in cells are weak acids. Examples include acetic acid, which is a stronger acid than water, but a weaker acid than HCl. When we describe weak acids, we designate them by the letters HA. When the acid loses a proton, we refer to what is left as A-. The difference between HA and A- is clearly the proton that is lost. We refer therefore to HA as the ACID and A- as the SALT. I will avoid using the term BASE wherever I can in this class.
13. If one has an acid that loses one proton per 1000 molecules, it is a stronger acid than one that loses one proton per 100,000 molecules.
14. The Henderson-Hasselbalch equation allows one to measure the pH if one knows the pKa and the amount of salt and acid.

Пікірлер: 16
@VanessaFrancoATL
@VanessaFrancoATL 10 жыл бұрын
Dear Kevin Ahern, Thank you very much for allowing access to your lectures and book. I am starting Med School and was in desperate need for a refresher course in BioChem. Your initiative is greatly appreciated. Grateful, Vanessa.
@KevinAhern
@KevinAhern 11 жыл бұрын
It is certainly standard to teach this to freshmen at our campus. That isn't the issue. The issue is whether they have learned it.
@Smilthy
@Smilthy 11 жыл бұрын
Sir, you truly are an inspiration to young students around the world. Thank you for sharing this!
@KevinAhern
@KevinAhern 11 жыл бұрын
If you want the course materials used here, click on Show More link above. There you will see links to many things, including the course materials both at OSU (BB 350) and iTunes U. Each has all of the materials for the entire course.
@nik44ful
@nik44ful 11 жыл бұрын
Hi Kevin Ahern, Thanks for the video. I found it very informative and song in the end make it just awesome .......Biochemistry Biochemistry I wish that I were wiser........:)
@KevinAhern
@KevinAhern 11 жыл бұрын
Hi Shalini: You can get all of the materials of all of my courses at iTunes U.
@poojapanicker96
@poojapanicker96 9 жыл бұрын
I wish I had a lecturer like this!! lol so funny!!!
@user-jt3km7us4d
@user-jt3km7us4d 10 жыл бұрын
Hi Doctor Kevin...Thank you very much for these amazing lectures....I found a lot of good informations that I can't understand with my teacher so thank you ....I'm from Saudi Arabia
@setboy1
@setboy1 11 жыл бұрын
That's an understandable issue to have. I guess something in the way you said it made me think this was the first time they were seeing it. My mistake probably. I like your videos. Keep up the good work.
@fsdfaable
@fsdfaable 10 жыл бұрын
thank you so much :))
@user-ti1bz8ke4w
@user-ti1bz8ke4w 6 жыл бұрын
The final song iz amazing! Biochem lectures in my university were much more boring...
@LOLthisfun
@LOLthisfun 4 жыл бұрын
Biochemistry, Biochemistry I wish that I were wiser
@bhstone1
@bhstone1 11 жыл бұрын
Is there any way to have the sound come from the right earphone in addition to the left?
@403MC2
@403MC2 11 жыл бұрын
so epic
@fgggggggable
@fgggggggable 9 жыл бұрын
This doesn't seem that hard yet. I'm planning on taking biochem in the upcoming semester yayayayayya
@setboy1
@setboy1 11 жыл бұрын
so, it isn't standard for freshmen chemistry to have weak acids taught at your school? From my school and looking at different general chemistry books I always thought weak acids were standard
Red❤️+Green💚=
00:38
ISSEI / いっせい
Рет қаралды 23 МЛН
تجربة أغرب توصيلة شحن ضد القطع تماما
00:56
صدام العزي
Рет қаралды 50 МЛН
100❤️
00:19
MY💝No War🤝
Рет қаралды 21 МЛН
#3 Biochemistry Lecture (Buffers) from Kevin Ahern's BB 350
40:23
Memorize The 20 Amino Acids - The Easy Way!
23:58
The Organic Chemistry Tutor
Рет қаралды 889 М.
pH and Buffers
5:57
Bozeman Science
Рет қаралды 823 М.
Biochemistry of Carbohydrates
16:15
Armando Hasudungan
Рет қаралды 2,2 МЛН
#02 Biochemistry Buffers Lecture for Kevin Ahern's BB 450/550
45:51
CHEM 349 - General Biochemistry - Chapter 2: Water, the Solvent of Life
59:40
16. Kevin Ahern's Biochemistry - Carbohydrates I
47:48
Kevin Ahern
Рет қаралды 35 М.
Red❤️+Green💚=
00:38
ISSEI / いっせい
Рет қаралды 23 МЛН