Osmosis as you have never seen it

  Рет қаралды 474,234

Physics Videos by Eugene Khutoryansky

Physics Videos by Eugene Khutoryansky

2 жыл бұрын

My Patreon page is at / eugenek

Пікірлер: 1 000
@d-o-n-u-t
@d-o-n-u-t 2 жыл бұрын
"There are no magical forces sucking the balls" - Physics Videos by Eugene Khutoryansky
@alejandraserrano5618
@alejandraserrano5618 2 жыл бұрын
I’m genuinely glad that I’ve been a subscriber for quite a while now. I feel grateful towards you for making physics and mathematics my greatest goal and the center of my life, as I thank you for your constancy and dedication. We all appreciate you a lot around here. Always on point; keep it up!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliments. I am glad my videos have had such a positive impact.
@FuzzerHash
@FuzzerHash 2 жыл бұрын
@@EugeneKhutoryansky Your videos has much impact in others lives, You can sure about that.
@SailboatAqua
@SailboatAqua 2 жыл бұрын
One of the videos posted almost 8 years inspired me to pursue physics as a career in highschool. Now I have a masters in physics and I am teaching high school physics!
@nbme-answers
@nbme-answers 2 жыл бұрын
What a comment! The POWER of KZfaq + the genius of creators!
@brookskioschos6494
@brookskioschos6494 2 жыл бұрын
Are you me?
@IncroyablesExperiences
@IncroyablesExperiences 2 жыл бұрын
The content on this channel is always excellent but what I love the most is the music and the voice 😂
@Trooman20
@Trooman20 2 жыл бұрын
B a w l z
@TheMASTERshadows
@TheMASTERshadows 2 жыл бұрын
Vous êtes toujours en vie hahaga
@kasulu57
@kasulu57 2 жыл бұрын
True I love the voice and content
@vedantsridhar8378
@vedantsridhar8378 2 жыл бұрын
hEllo heyya heyyaaaaa heyyo joyuhahahahaha hi hi hello hi Laugh it out of hmmmmmm, sorry where was I?.. Ah, I get it, an entire piece of cheese! Pull that out of the hahaha
@BradBozarth
@BradBozarth 2 жыл бұрын
😂
@anonymous.youtuber
@anonymous.youtuber 2 жыл бұрын
This is how osmosis really works. I remember teachers mentioning a mysterious sucking force. Thanks for elucidating !
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@Ohr45
@Ohr45 2 жыл бұрын
@@EugeneKhutoryansky Yeah same, I never fully got the hang of it. Thanks Eugene that was a legendary move, keep it up!
@Ken-no5ip
@Ken-no5ip 2 жыл бұрын
Its just the average motion of all the particles in the system
@MrWnw
@MrWnw 2 жыл бұрын
So how does it work? I think it wasnt explaind in the video
@imaginaryuniverse632
@imaginaryuniverse632 2 жыл бұрын
I'm pretty sure in cells there is a sucking force but it's not mysterious, it's a resonance of attraction that works like a tractor beam for particles in range that are in harmony with the attractor. In our mitochondria the attractors are called enzymes and something else that attracts electrons one by one from atoms leaving just the protons. It's called the electron transfer chain and I believe it is how all energy and the information it necessarily contains is transferred and transformed at all levels in the Universe. How particles move is dependent upon the boundary conditions they appear in with the nearest being the most influential. Like a cell is influenced most directly by it's nucleus but the function of the cell is also greatly influenced by the Heart, cerebral spinal fluid system, the Earth, Sun...
@okloster0
@okloster0 2 жыл бұрын
As noted in the commentary, there are no attractive forces between the particles in this simulation. This means that you are simulating two ideal gases (well, if we ignore the particles' volume). In such a case, the osmotic pressure is equal to the partial pressure of the cubes, while the partial pressure of the spheres will converge to being equal on both sides of the barrier. The simulation is not representative for osmosis in liquids. For liquids, there IS an attractive force between particles, and this is essential for explaining the high osmotic pressures in liquids. For instance, the osmotic pressure between sea water and fresh water is an amazing 24 atmospheres, although the difference in salt concentration is only 3.5%.
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
The following quote is from the Wikipedia page on Osmosis: "The 'bound water' model is refuted by the fact that osmosis is independent of the size of the solute molecules-a colligative property-or how hydrophilic they are."
@okloster0
@okloster0 2 жыл бұрын
True, how hydrophilic the solute is (the attraction between balls and cubes) is not essential. But the attraction between solvent molecules (water/balls) is important. This force is necessary for the solvent to be a liquid, and is part of the explanation for the high osmotic pressure in liquids.
@aerobyrdable
@aerobyrdable 2 жыл бұрын
@@okloster0 citation, please
@IamGrimalkin
@IamGrimalkin 2 жыл бұрын
@@okloster0 I don't know a vast amount about the exact physics of osmosis, but surely the high density of water has something to do with it? Ignoring interaction, you'd expect the osmotic pressure of water to be higher than a similar quantity for gases because more mass per unit area means more force per unit area.
@IamGrimalkin
@IamGrimalkin 2 жыл бұрын
Wait, I just realised the both ideas are essentially equivalent: the attractive forces are what causes the high density of liquids in the first place.
@alachance2010
@alachance2010 2 жыл бұрын
This helped my intuition a ton. So hypothetically if the membrane only let the squares through, we'd see the same thing but to the other side. Amazing.
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks. I am glad my video was helpful.
@phdnk
@phdnk 2 жыл бұрын
@@EugeneKhutoryansky will the behavior still hold if squares were made round, but still not able to got through the barrier ?
@FrancisR420
@FrancisR420 2 жыл бұрын
@@phdnk I do believe the squares and circles were just a demonstration of the concept
@Wurmish
@Wurmish 2 жыл бұрын
I imagine most sorts of semi-permeable membrane can be abstracted to this kind of visualization? The purpose is to show that a shape-specific filter has that result whether they are simulated shapes or biology, chemistry, and physics doing their things, correct?
@anteeko
@anteeko 2 жыл бұрын
Such a fantastic channel, I cannot even explain how glad I am to have found this place, thousand thanks!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks. I am glad you like my videos.
@tomasprior3328
@tomasprior3328 2 жыл бұрын
You never cease to amaze me! Amazing work as usual.
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliment.
@Prateekspectrum
@Prateekspectrum 2 жыл бұрын
Ohh really 😊
@vauchomarx6733
@vauchomarx6733 2 жыл бұрын
"This is the beauty of physics" - You just described your channel in a nutshell!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliment.
@jaxnean2663
@jaxnean2663 2 жыл бұрын
These particles sure have a broad taste in music!
@konradswart4069
@konradswart4069 2 жыл бұрын
Again, a MARVELOUS video! Thank you very much for your work!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliment about my video. I am glad you liked it.
@marklundeberg7006
@marklundeberg7006 2 жыл бұрын
Great demo! Another interesting case I can imagine is where there are some attractive interactions between the cubes(so it becomes a liquid) , but keeping only the same hard repulsion with the spheres. You can then demo some things like colligative properties, and also show that the 'vapor' of spheres above the liquid has equal concentration on left and right, at heights where there are few cubes. I've always wondered if there is a clean and intuitive way to visualize chemical potential, and perhaps this approach could help.
@N0Xa880iUL
@N0Xa880iUL 2 жыл бұрын
Thank you so much. You have the best intuition on physics, classical or otherwise.
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliments.
@insideoli
@insideoli 2 жыл бұрын
So happy you are back!! ❤️ always supporting this channel since forever ago!!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks. I appreciate your support.
@Rhannmah
@Rhannmah 2 жыл бұрын
This is indeed the beauty of physics. Extremely simple laws, profound consequences beyond measure.
@Nick-mq6iq
@Nick-mq6iq Жыл бұрын
Scrolled to this comment as soon as they said it
@Manabender
@Manabender 2 жыл бұрын
Hey, I just wanna say: Your videos are amazing. They have incredibly insightful and intuitive demonstrations of otherwise hard-to-understand concepts. I get the feeling they're primarily intended for use in schools. But honestly, I enjoy them for their own sake. Keep it up; you're doing great work.
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliments about my videos. My videos are intended for anyone who wants to watch them. Many of my viewers are not even students (although many are). Thanks.
@kanabhprates2103
@kanabhprates2103 2 жыл бұрын
Oh god, so awesome channel. Thank you for your work.
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliments.
@suspendedtheone2174
@suspendedtheone2174 2 жыл бұрын
Commendable job in visualizing this,thanks .
@topfivepicks005
@topfivepicks005 2 жыл бұрын
I used to watch your videos back in 2016 and your animation is awesome glad i found you on youtube still making breathtaking animations...That quantum Mechanics video was magnificent
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliments.
@vash-san
@vash-san 2 жыл бұрын
I like the heavy metal backing track! The explanation is also very clear, thank you!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@maxwellsequation4887
@maxwellsequation4887 2 жыл бұрын
Yay! My fav youtuber uploaded!! Brilliant video and explanation, as always :)
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliments.
@eduardobarros6562
@eduardobarros6562 2 жыл бұрын
I didnt expect that cannonball motion ricochet at 2:07
@StarFury2
@StarFury2 2 жыл бұрын
Fantastic as always Eugene!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliment.
@skun406
@skun406 2 жыл бұрын
Great visualisation of how osmosis works, and what is the difference between osmosis and diffusion. Thanks!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliment. It depends on how we define "diffusion." In the first two examples with osmosis, I wouldn't call this diffusion, because the concentration of balls will never be the same on the two sides of the barrier, due to the presence of the other particles which can't pass through the membrane.
@AlgernonGeorgie
@AlgernonGeorgie 2 жыл бұрын
I feel those squares desperation, in struggling to get through the barrier
@CAPSLOCKPUNDIT
@CAPSLOCKPUNDIT 2 жыл бұрын
You must be at least this small to get on the ride.
2 жыл бұрын
High quality delivery from Eugene as always. Keep it up!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliment.
@geraldsnodd
@geraldsnodd 2 жыл бұрын
Nice simulation I never knew osmosis on a molecular level. You have great taste in music ,listened to quite a few classical pieces while watching your previous videos.
@omraikar8517
@omraikar8517 2 жыл бұрын
Thanks for this video 🙏. It's one of the best in your playlists. I think I finally understood osmotic pressure. Please correct me if I'm wrong. So, initially we have water(spheres) on both sides and the pressure on both sides of the wall is equal. Suppose, we add NaCl salt and the ions get hydrated immediately and represent the cubes. The cubes owing to their larger size, restrict movement of spheres and even block them from effectively colliding with the barrier. This can be thought of as decrease in the pressure on that side. So, now the other side spheres will cross the barrier more frequently until pressures are balanced again. So, there are more net molecules on the salt side and denotes the increase in height. This decrease in pressure on the salt side is called osmotic pressure and proportional to the concentration of salt added.
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
No, that is not it. Imagine that there were an equal number of total balls and squares, and we start with all the balls on the left side, and all the squares on the right side. Some of the balls are going to move from the left to the right, because it is extremely unlikely that they would all stay on the left side. The fact that we now have a greater number of total particles on the right side means that we now have a higher pressure on the right side than on the left side. Thanks for the compliment about my video.
@omraikar8517
@omraikar8517 2 жыл бұрын
@@EugeneKhutoryansky Got it!!..Thanks for your response..being such a big creator you reply to every comment 🙏
@revimfadli4666
@revimfadli4666 2 жыл бұрын
@@EugeneKhutoryansky thanks, do the squares "push" some of the balls back to the left? And why does this not counteract the movement of balls to the right?
@Pseudify
@Pseudify 2 жыл бұрын
@@EugeneKhutoryansky. I don’t think your last point is correct. The total number of particles cannot account for the osmotic effect because osmosis would occur in the same direction and with the same pressure regardless of the starting volumes on either side of the barrier. Only the concentrations are relevant.
@omraikar8517
@omraikar8517 2 жыл бұрын
@@Pseudify Sir, can you please comment on my explanation? Like, where exactly I'm wrong 😅
@Ccccccccccsssssssssss
@Ccccccccccsssssssssss 2 жыл бұрын
Great video! Thanks so much for making these!!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
I am glad you liked my video. Thanks.
@alphahelix5526
@alphahelix5526 2 жыл бұрын
Awesome work as always
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliment.
@4.0.4
@4.0.4 2 жыл бұрын
Isn't it fascinating? You look at a simple household phenomena, and deep down it's a bunch of particles bouncing around, just so many of them that it looks like e.g. coffee going up a paper filter.
@cheftt6863
@cheftt6863 2 жыл бұрын
You're on the right track with this whole background music thing. Hopefully very soon, you'll decide to drop the whole thing. Believe me, your voice is mesmerizing, music here is unneeded.
@IceHibiscus
@IceHibiscus 2 жыл бұрын
This is one of my favorite topics. Very very well done.
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@MarcoAGJ
@MarcoAGJ 2 жыл бұрын
Great as always.
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@johannespanagiotopoulos4917
@johannespanagiotopoulos4917 2 жыл бұрын
Wonderful and very instructive as all of your videos! We must be careful with "entropy" here. If you consider a time-series of consecutive, fully described microstates for which you know everything you cannot define entropy. Entropy can only be defined if you set only marcoscopic quantities and ask in how many microscopic ways they can be achieved. What is meant here is that initially we have a microstate that is part of the low entropy "all particles in one side" set and we end up with a microsate that is part of the high entropy "particles equally spread on both sides" set. This happens because the initial velocities were randomized by the collision (no-gravity-simulation). Newtonian mechanics says that if we play the video backwards we will have a thermodynamics defying system which lowers its entropy. I only do not know how random is the motion of the diaphragm.
@brandonklein1
@brandonklein1 2 жыл бұрын
I think the macrostate can be inferred here to be temperature, since it is specified that all collisions are elastic. Thus we can take S=k*ln(Omega).
@NintenbroV1
@NintenbroV1 2 жыл бұрын
@@brandonklein1 I'm pretty sure that the macroscopic variable in consideration here is more likely the particle number on each side of the membrane, as that is what changed to increase the later states' "entropy." But, yeah, when the video talked about entropy, they likely meant the entropy associated with a specific macroscopic quantity, not the entropy associated with the specific microstate shown onscreen.
@brandonklein1
@brandonklein1 2 жыл бұрын
@@NintenbroV1 The number of particles of the entire system remains constant.
@HoaTran-pf8is
@HoaTran-pf8is 2 жыл бұрын
Thanks so much for sharing! BTW, I love your voice! 😊
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks. The narration is done by my friend, Kira Vincent.
@HoaTran-pf8is
@HoaTran-pf8is 2 жыл бұрын
You did really amazing team work! Keep going! ^^
@ZER0_K
@ZER0_K 2 жыл бұрын
narrator : the liquid on the right will continue to rise... BGM : *proceeds to literally destroy the guitar*
@codyluna7065
@codyluna7065 2 жыл бұрын
The blistering guitars in the background were a nice touch
@goclbert
@goclbert 2 жыл бұрын
Oh my God yes! I tutor chemistry and this is so helpful. Thank you!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
I am glad my video is helpful. Thanks.
@teleCodes
@teleCodes 2 жыл бұрын
This is a great visualization! but I'm curious if the squares would reach the same height as the spheres with a non-permeable membrane. I noticed that the squares could transfer rotational energy to each other and the spheres couldn't.
@Azzinoth224
@Azzinoth224 2 жыл бұрын
This is a great observation. I wonder if/how the results change if you just use larger balls instead of squares? After all the squares have more degrees of freedom and therefore higher energy...
@lastchance8142
@lastchance8142 2 жыл бұрын
Dont understand your assertion.. Why can't spheres transmit angular momentum (rotational energy) to each other?
@Filaxsan
@Filaxsan 2 жыл бұрын
This is amazing! Thanks for making it!!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@morganga
@morganga 2 жыл бұрын
So squares block balls from escaping the square side of the barrier. Equilibrium is reached with more objects on the square side of the barrier.
@chriszachtian
@chriszachtian 2 жыл бұрын
Your clips are wonderful art! I am looking forward for Navier-Stokes equations to be visualised ;-) Why not, it worked with Maxwell as well?
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
That is on my list of topics for future videos. Thanks.
@crimson4066
@crimson4066 2 жыл бұрын
How does an increase in pressure cause a displacement of molecules with equal densities? Why did the squares rise?
@greg77389
@greg77389 2 жыл бұрын
The cubes impart a greater portion of their energy to the barrier than the balls since it blocks them completely. That creates the pressure difference as balls enter the right side. With this increase in pressure, the cubes need somewhere to push. Since they can't go through the barrier like the balls can, they have nowhere to go but up.
@tillybillyboyboy
@tillybillyboyboy 2 жыл бұрын
I really like these models, super facinating representations
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliment.
@sarnxero2628
@sarnxero2628 2 жыл бұрын
I've been subbed too this channel for years and love it
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@DHastingsJr1
@DHastingsJr1 2 жыл бұрын
I never thought of it this way, but could it be explained as simply as the cubes block the path to the barrier, so the balls on the left have a greater opportunity to pass through than than the balls on the right? Equilibrium is reached when the right side has enough "extra" balls in it that the occurrence of barrier interaction is equal on both sides? This is very enlightening! Thanks for the great videos!
@billyt8868
@billyt8868 2 жыл бұрын
that would not be an accurate description of what’s actually happening at a semipermeable membrane though. it’s not that the membrane is being blocked by the solute particles. this video doesn’t discuss/explain osmotic pressure which is what you’re getting at. i wish they did because that’s the actual concept that’s hard to conceive.
@DHastingsJr1
@DHastingsJr1 2 жыл бұрын
@@billyt8868 So I found this.. kzfaq.info/get/bejne/qKl-n6qQz8XLg4E.html Hoping this is a more thorough explanation? Seems multiple facets to osmosis, including solute possibly holding on to solvent, solute blocking solvent (which still evidently plays a role), and I would still also posit, the fact that there are more molecules of solvent on one side than the other, increasing the probability that solvent molecules from the more dilute side will interact with the membrane? Is there more that you are aware of? Thanks for the reply. I'm always interested in learning.
@lastchance8142
@lastchance8142 2 жыл бұрын
I think that makes sense. But the cubes block the membrane channel to movement from both sides. So it seems to be diffusion is actually happening, while being "hindered" by the cubes, and pressure increases because of the greater volume of particles on the right side. What confuses me is why the pressure gradient doesn't force more spheres to the left side!
@cooperfeld
@cooperfeld 2 жыл бұрын
Your simulation is very interesting to watch - brought me to the question, if the driving 'force' behind real Osmosis could be a pure filter effect? I'm not sure if this is your conclusion or very far from it. Just from what I saw in the sim, I think it's behaviour is all down to the barrier in the middle, which allows balls to pass from the left to the right side more easily than from right to left. The mid barrier could be seen as a filter with directional permeability, maybe like a coffee filter. For example, imagine a coffee filter installed in an Aquarium, where on the left side is pure water, while on the right we have 'coffee powdered water'. Now in the simulation the squares ('coffee particles') on the right partly block/clog the filter towards the left, so balls (water molecules) which happen to enter the right area have a higher tendency to stay there, than to return back - a bit like a sponge-effect, but without the adhesive forces. The reason why not (almost) all balls end up on the right, is that the right-to-left permeability ("leakage") effectively increases with more balls on the right, due to rising pressure (= particle-particle/-wall collisions per time unit) in this area, just like described in the video. With the filter's/barrier's permeability moving from directional towards unidirectional, the amount of particles on the right grows slower and slower - until a near-equilibrium state is reached.
@willo7734
@willo7734 2 жыл бұрын
Awesome demo. Thanks!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliment.
@Downlead
@Downlead 2 жыл бұрын
Another great video. I love it. 👍🏻
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks. I am glad you liked my video.
@user-ir5qt8rj6o
@user-ir5qt8rj6o 2 жыл бұрын
Отличные видео как всегда) где они были, когда я учил физику в школе?
@chemistryshahi
@chemistryshahi 2 жыл бұрын
Nice video! Also, good to consider that in equilibrium, at the side with solute, decrease of stability of solvent due to increase of pressure as osmotic pressure is compensated and balanced by increase of stability of solvent due to entropic effects (ideal behaviour) beside possibly solvent-solute interactions giving rise to non-ideal behaviour.
@seanmcdonough8815
@seanmcdonough8815 2 жыл бұрын
Great video, truly visually superb!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliments.
@Borishal
@Borishal 2 жыл бұрын
So glad I came across your video. Many thanks.🌹🌹
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
I am glad you liked my video. Thanks.
@TimRobertsen
@TimRobertsen 2 жыл бұрын
It would have been really cool if you let the simulation at 05:05 run to equilibrium, and then beyond that (maybe sped up). Just to see how it plays out. Especially to see how far beyond equilibrium the system oscillates.
@ksp-crafter5907
@ksp-crafter5907 2 жыл бұрын
Agree!
@MrRyanroberson1
@MrRyanroberson1 2 жыл бұрын
On my first pass, i didn't see much of a justification for how this happens. I'll watch it again... Alright. it's easy to miss this, you mention that the influence of the squares is important, but you don't really explain why except in empirical terms: it happens, here's it happening. The balls can pass, but not the squares. The explanation would probably involve something like... The balls, being able to pass through, are able to exert a pressure through the membrane, while the squares are not. The effect of the squares is not the same as it would be had they been balls, because for a square to oppose the balls entering the right side, the squares must force each ball back through the membrane, while when there are only balls on both sides, a ball on the right side only has to pass through the membrane, NOT just force a different ball through. Therefore it is much more likely that, when there are balls on both sides of the membrane, that the balls on one side can resist an imbalancing flow of balls; and it is less likely that, when there are squares on one side of the membrane, that the density of particles would remain similar, because for this to occur, the presence of the squares would have to have an equivalent likelihood of decreasing the number of balls present in the right side as would an equivalent number of balls, which is not true because the barrier prevents the squares from performing one of the two ways a ball could achieve this: by passing through.
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Imagine that there were an equal number of total balls and squares, and we start with all the balls on the left side, and all the squares on the right side. Some of the balls are going to move from the left to the right, because it is extremely unlikely that they would all stay on the left side.
@GhostGlitch.
@GhostGlitch. 2 жыл бұрын
@@EugeneKhutoryansky how is this significantly different than diffusion then?
@thelegendaryblackbeastofar39
@thelegendaryblackbeastofar39 2 жыл бұрын
Brilliant video!!!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliment.
@sr-kt9ml
@sr-kt9ml 2 жыл бұрын
I love your videos. Thanks for always teaching me something new
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks. I am glad you liked my videos.
@darshandeokar3418
@darshandeokar3418 2 жыл бұрын
Thank you for such a great video.
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks. I am glad you liked my video.
@borghorsa1902
@borghorsa1902 2 жыл бұрын
Your channel is the prime example of an extremely gifted educator doing excellent work on visuals!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliment.
@ikemuhlen
@ikemuhlen 2 жыл бұрын
Awesome, as always
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@wizard7314
@wizard7314 2 жыл бұрын
I think it helps to imagine the diffusion scenario with the cubes-- left side has more pressure obviously. Add a few balls at a time. Now we see this increases the pressure of both sides, reducing the ratio of the two pressures. Dilute it enough with balls and they basically have the same pressure. I guess the paradox that people may be confused by is that the transition rate is not proportional to pressure. The transition rate of each individual particle is proportional to its partial pressure, times some coefficient determining the penetrability of the barrier, e.g. a partial diffusion timescale. Each particle type has its own diffusion timescale-- it may be infinity, as in the case here with the cubes.
@KazmirRunik
@KazmirRunik 2 жыл бұрын
This is a very accessible way of teaching it. You can probably append even more intuition to this without really having to get into the weeds with statistics. This is already useful as-is in a classroom where an instructor can provide an extra bit of explanation, but it would probably benefit this video as a supplement if there was a visual aid for what's happening at the level of the single particle: What I imagine is that every time a particle interacts with the barrier, there's a chance that it's either a ball or a square. Because squares can't pass through the barrier, then even though there might be just as many particles interacting with the barrier on both sides, the side with the squares won't send as many particles across the barrier, resulting in the side with the squares gaining more particles from the other side. I believe this would be another fairly intuitive addition to point out while still maintaining its accessibility to people less versed in higher math.
@falnesioghander6929
@falnesioghander6929 2 жыл бұрын
I find this explanation concerning the chances of what objecting hitting the hole on either side to be very helpful in understanding the simulation. Thank you.
@s.b.l.c7631
@s.b.l.c7631 2 жыл бұрын
Great dedication...❤️👍
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@michaelransom5841
@michaelransom5841 2 жыл бұрын
really really good demonstration
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliment.
@gsingh1025
@gsingh1025 2 жыл бұрын
Outstanding demonstration of process of 'Osmosis'. Hats off to your efforts, which make the concepts crystal-clear👏🏻👏🏻👏🏻👏🏻👍🏻👍🏻👍🏻👍🏻
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliments.
@rexonakhatoon8108
@rexonakhatoon8108 2 жыл бұрын
Hi! Thank you so much for such genuine information! Kindly upload more! Thank you so much.
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
More videos are on their way. Thanks.
@blockshift758
@blockshift758 2 жыл бұрын
They just that kind of charm to this kind of videos randomly appearing
@eita3141
@eita3141 2 жыл бұрын
Great video, as always 😇
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliment.
@AcademiaCS1
@AcademiaCS1 2 жыл бұрын
You and your channel one of the most incredible places to visualize and learn physics. Specially understand it. YOU ARE GREAT
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliment.
@tbd5330
@tbd5330 2 жыл бұрын
Great work 🙏
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@vinstinct
@vinstinct 2 жыл бұрын
Did the KZfaq Gods randomly recommend this video to anyone else? Stayed for the whole video.
@KenJackson_US
@KenJackson_US 2 жыл бұрын
KZfaq probably can't figure out how to assign a political agenda to it so they treat it neutral.
@viniciusfernandes2303
@viniciusfernandes2303 2 жыл бұрын
Thanks for the video!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@1wisestein
@1wisestein 2 жыл бұрын
Amazing! Completely kinetic!
@realcygnus
@realcygnus 2 жыл бұрын
Nifty as always !
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@Bluedragon2513
@Bluedragon2513 2 жыл бұрын
Much needed for the future as a starting point
@PinakiSwain
@PinakiSwain 2 жыл бұрын
Excellent video.
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks. I am glad you liked my video.
@ibensubber3826
@ibensubber3826 2 жыл бұрын
Very well explained and visualized. Thank You
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@seanb3516
@seanb3516 2 жыл бұрын
You can explain most of Osmosis more easily by looking at a container pressurized with Helium gas. The container is able to hold any gas except Helium which slowly leaks out of any container. As the Helium leaks out other gases are not able to leak into the container and over time a perfect vacuum will form. Looking at this example allows you to use only one gas and the vacuum as the two liquids with the vacuum being a non-participant. This exact situation was also a full days' mystery when my container developed an excellent vacuum all by itself over a weekend. Turns out this is one of the steps to create really deep vacuums (Roughing, TMP, Helium-Vacuum washing, Helium-Thermal pumping).
@jlpsinde
@jlpsinde 2 жыл бұрын
Thanks so much, this is amazing
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks. I am glad you liked my video.
@aashsyed1277
@aashsyed1277 2 жыл бұрын
I love the animations and always want more .
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks. I am glad you like my animations.
@satvikvarun6386
@satvikvarun6386 2 жыл бұрын
@@EugeneKhutoryansky everyone likes your animations
@JP-wx6uh
@JP-wx6uh 2 жыл бұрын
Fascinating and a great learning tool
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks. I am glad you liked it.
@SenecaNL
@SenecaNL 2 жыл бұрын
Can we safely assume that the increase in the number of spheres on the right-hand side is caused by the cubes hindering the reverse diffusion of those spheres back to the left? I can imagine that moving from left to right is easier (fueled by diffusion) for the spheres than returning due to blockage of the membrane by the cubes resulting in an increased number of particles on the right.
@NightmareCourtPictures
@NightmareCourtPictures 2 жыл бұрын
No, not a safe assumption. The reason it behaves like this comes down to the configuration of the cell wall and that's it. Equilibrium distribution is the only game in town, and the molecule configuration, is a way for the molecules to parse what it wants inside and outside the cell. If the cell wants triangles, then it's molecules will have a configuration that allows triangles to pass through, and triangles will diffuse into the cell just as circles do, and come to equilibrium eventually.
@OlleLindestad
@OlleLindestad 2 жыл бұрын
This is the explanation given in the literature, yes. The interaction of squares (solute) and the membrane has to make it harder for spheres (solvent particles) to move left than right, or osmosis couldn't happen. Although I find it a little hard to see what's going on with the individual particles near the membrane in the simulation.
@mechvex8726
@mechvex8726 2 жыл бұрын
I used to watch this years back no way it popped back on my recommended
@MikeWalls7829
@MikeWalls7829 2 жыл бұрын
Wow thanks I finally totally get osmosis thanks to this illustration, seriously thank you so much!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@stuartwilson4754
@stuartwilson4754 2 жыл бұрын
Beautiful demonstration. I am retired now, but have fought a long and ultimately unsuccessful campaign to have the word 'osmosis' removed from scientific writing. Students often struggle to understand 'osmosis' and end up seeing it as a strange phenomenon. As your video shows with wonderful clarity.....there is no process of 'osmosis' , there is only diffusion down a concentration gradient. The difference is that it is the solvent (water) and not the solute that diffuses. Or....more correctly, water can diffuse more rapidly, which leads us onto things like reflection coefficients. Wonderful video!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliment about my video.
@AmitKumar-xw5gp
@AmitKumar-xw5gp 2 жыл бұрын
Awesome video.. loved it.
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks. I am glad you liked my video.
@zen6591
@zen6591 2 жыл бұрын
this is wonderful
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@sunjin8103
@sunjin8103 2 жыл бұрын
This is beauty of the Physics. I love it!!
@brentbrooks4101
@brentbrooks4101 2 жыл бұрын
I don't understand how this video could have even 1 dislike wonderful explanation. And greatly edited video cx
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks for the compliment.
@student69741
@student69741 2 жыл бұрын
Great job! 👍 Cleared all my doubts 😊
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@leylanas
@leylanas 2 жыл бұрын
Great video
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks. I am glad you liked my video.
@KhalilEstell
@KhalilEstell 2 жыл бұрын
Another banger. Keep it up. Today I learned how osmosis works. Didn't even consider it before.
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
I am glad you liked my video.
@VoidHalo
@VoidHalo 2 жыл бұрын
I must be slipping in my old age. I opened this last night meaning to watch it and fell asleep before I could. So I just went to watch it today, with the tab still opened, and thought the picture on the screen was some sort of novel Tetris game. Either that or constant stress has just broken my brain. I hear it does that.
@babloovyas1080
@babloovyas1080 2 жыл бұрын
One word, beautiful. carry on my friend
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@Cherb123456
@Cherb123456 2 жыл бұрын
Pretty wicked! Thank you, wild!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@GauravKumar-dr2yk
@GauravKumar-dr2yk 2 жыл бұрын
Excellent content...
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@PedroPedrix
@PedroPedrix 2 жыл бұрын
It was amazing to review concepts from high school times! Thanks a lot!
@EugeneKhutoryansky
@EugeneKhutoryansky 2 жыл бұрын
Thanks.
@Elluem
@Elluem 2 жыл бұрын
If I'm understanding this correctly, the reason the particles tend to gather on the side with the material that cannot pass through the barrier, is because their very presence on that side of the barrier sort of interacts with the nature of the barrier itself. Effectively making it better at sending the round particles through on side, and harder for them to come back.. due to the cube particles blocking them. The cube particles pretty freely let all other particles flow between them, but when they're up against the barrier their presence effectively adds extra pressure required to go back consistently. These interactions naturally create an equilibrium state that is counterintuitively asymmetrical.
Reverse Osmosis
5:32
Physics Videos by Eugene Khutoryansky
Рет қаралды 62 М.
What causes the Pauli Exclusion Principle?
20:52
Physics Videos by Eugene Khutoryansky
Рет қаралды 309 М.
Always be more smart #shorts
00:32
Jin and Hattie
Рет қаралды 48 МЛН
버블티로 체감되는 요즘 물가
00:16
진영민yeongmin
Рет қаралды 112 МЛН
A clash of kindness and indifference #shorts
00:17
Fabiosa Best Lifehacks
Рет қаралды 27 МЛН
How does electricity find the "Path of Least Resistance"?
22:45
AlphaPhoenix
Рет қаралды 1,4 МЛН
Homochirality: Why Nature Never Makes Mirror Molecules
18:32
Steve Mould
Рет қаралды 1,5 МЛН
Are solid objects really “solid”?
21:29
AlphaPhoenix
Рет қаралды 6 МЛН
Thermodynamics and the End of the Universe:  Energy, Entropy, and the fundamental laws of physics.
35:56
Physics Videos by Eugene Khutoryansky
Рет қаралды 933 М.
The Surprising Secret of Synchronization
20:58
Veritasium
Рет қаралды 25 МЛН
Molecular Temperature & Degrees of Freedom
14:10
Physics Videos by Eugene Khutoryansky
Рет қаралды 118 М.
The Big Misconception About Electricity
14:48
Veritasium
Рет қаралды 22 МЛН
Why Relativity Breaks the Schrodinger Equation
17:09
Richard Behiel
Рет қаралды 132 М.
Quantum Mechanics:  Animation explaining quantum physics
25:47
Physics Videos by Eugene Khutoryansky
Рет қаралды 4,1 МЛН
Fluid dynamics feels natural once you start with quantum mechanics
33:00
braintruffle
Рет қаралды 2,1 МЛН
Hisense Official Flagship Store Hisense is the champion What is going on?
0:11
Special Effects Funny 44
Рет қаралды 2,9 МЛН
Урна с айфонами!
0:30
По ту сторону Гугла
Рет қаралды 8 МЛН
Simple maintenance. #leddisplay #ledscreen #ledwall #ledmodule #ledinstallation
0:19
LED Screen Factory-EagerLED
Рет қаралды 27 МЛН
Здесь упор в процессор
18:02
Рома, Просто Рома
Рет қаралды 200 М.
1$ vs 500$ ВИРТУАЛЬНАЯ РЕАЛЬНОСТЬ !
23:20
GoldenBurst
Рет қаралды 1,6 МЛН